Effect of lipid peroxidation conditions on calcium-dependent activity of phosphodiesterase 3′,5′-cAMP in the rat brain

Biologia ◽  
2006 ◽  
Vol 61 (6) ◽  
Author(s):  
Monika Ďurfinová ◽  
Marta Brechtlová ◽  
Branislav Líška ◽  
Želmíra Barošková

Abstract3′,5′-cAMP plays an important role as a second messenger molecule controlling multiple cellular processes in the brain. Its levels are decreased by phosphodiesterases (PDEs), responsible for hydrolysis of intracellular cAMP. A part of the PDE activity is dependent on the effect of calcium, mediated by its binding to calmodulin. During oxidative stress, precisely these changes in calcium concentration are responsible for cell damage. We have examined the effects of oxidative stress conditions on the activity of PDE in rat brain homogenates. We found a different influence of activated lipid peroxidation conditions (Fe2+ with ascorbate and increased temperature) on the calcium-dependent and calcium-independent PDE activity. The inhibition of Ca2+-dependent PDE was observed, while Ca2+-independent PDE was not influenced. We assume that it might be the impact of lipid peroxidation products or any mechanism activated by the higher temperature on the interaction of the Ca2+-dependent isoform of PDE with the complex calcium-calmodulin. Another explanation might be that the formation of the functioning calcium-calmodulin complex is impossible in these conditions.

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sidra Perveen ◽  
Shalu Kumari ◽  
Himali Raj ◽  
Shahla Yasmin

Abstract Background Fluoride may induce oxidative stress and apoptosis. It may also lead to neurobehavioural defects including neuromuscular damage. The present study aimed to explore the effects of sub lethal concentrations of sodium fluoride (NaF) on the lifespan and climbing ability of Drosophila melanogaster. In total, 0.6 mg/L and 0.8 mg/L of NaF were selected as sublethal concentrations of NaF for the study. Lifespan was measured and climbing activity assay was performed. Results The study showed significant decrease in lifespan of flies treated with fluoride. With increasing age, significant reduction in climbing activity was observed in flies treated with sodium fluoride as compared to normal (control) flies. Flies treated with tulsi (Ocimum sanctum) and NaF showed increase in lifespan and climbing activity as compared to those treated with NaF only. Lipid peroxidation assay showed significant increase in malondialdehyde (MDA) values in the flies treated with NaF as compared to control. The MDA values decreased significantly in flies treated with tulsi mixed with NaF. Conclusions The results indicate that exposure to sub lethal concentration of NaF may cause oxidative stress and affect the lifespan and climbing activity of D. melanogaster. Tulsi extract may help in reducing the impact of oxidative stress and toxicity caused by NaF.


2016 ◽  
pp. 75-78
Author(s):  
Liliia Babynets ◽  
Tetiana Maevska

The study proved that patients with combined progress of osteoarthritis and chronic pancreatitis have reliable top-level activation of lipid peroxidation in terms of malonyc aldehyde and tissue destruction in terms of oxyproline, weakening of the antioxidant level (in terms of superoxide dismutase and SH-groups) and activation parameters of catalase and ceruloplasmin (p<0,05). The authentic predictority of patients biological age, duration of combined clinical courses, the functional capacity of the pancreas in terms of fecal α-elastase, structural state by ultrasound criteria for progression effects of oxidative stress, accumulation oxyproline activation parameters catalase and ceruloplasmin, which statistically was reflected by the presence of mainly moderate of significant correlations between these groups of indicators have been identified.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
César Esquivel-Chirino ◽  
Juan Carlos Gómez-Landeros ◽  
Erika Patricia Carabantes-Campos ◽  
Daniela Carmona-Ruiz ◽  
Yolanda Valero-Princet ◽  
...  

Periodontal disease is an inflammatory condition that alters the periodontium, resulting in destruction of the alveolar bone; without treatment the condition may lead to tooth loss. Dental implants are an alternative for substitution of naturally lost teeth as they have high success rates; however, some factors are related to its failure. Peri-implantitis (PI) is a pathological condition that affects the tissues surrounding dental implants and has been reported as the major cause of implant failure; PI and periodontal diseases are characterized by tissue inflammation and bone damage. In homeostasis conditions, reactive oxygen species (ROS) have been shown to be involved in cell maintenance, signal transduction, and repair of all tissues, but ROS overaccumulation leads to oxidative stress, which generates cell damage and tissue destruction; likewise, antioxidants protect against the destructive effects of ROS by turning free radicals into waste products. The main purpose of this review was to determine some aspects of inflammatory responses and oxidative stress and analyze their relationship with the lack of osseointegration and PI.


Poljoprivreda ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 15-24
Author(s):  
Magdalena Matić ◽  
◽  
Rosemary Vuković ◽  
Karolina Vrandečić ◽  
Ivna Štolfa Čamagajevac ◽  
...  

During cultivation, wheat is exposed to several abiotic and/or biotic stress conditions that may adversely impact the wheat yield and quality. The impact of abiotic stress caused by nitrogen deficiency and biotic stress caused by phytopathogenic fungus Fusarium culmorum on biomarkers of oxidative stress in the flag leaf of nine winter wheat varieties (Ficko, U-1, Galloper, BC Mandica, BC Opsesija, Ingenio, Isengrain, Felix, and Bezostaya-1) was analyzed in this study. Hydrogen peroxide concentration and lipid peroxidation level were measured as indicators of oxidative stress, while the antioxidant response was determined by measuring the concentration of phenolic compounds and activities of antioxidant enzymes. Wheat variety and nitrogen treatment had a significant effect on all examined biomarkers of oxidative stress in the flag leaf, while the impact of Fusarium treatment was less pronounced. The most significant impact on the measured stress biomarkers had a low nitrogen level, which mainly increased hydrogen peroxide concentration and lipid peroxidation level and decreased activities of antioxidant enzymes in most varieties. The obtained results were discussed and compared with the previous study in which biochemical analyzes were performed on the wheat spike. There was no significant strong correlation between flag leaf and spike response in the measured parameters, which, in addition to the variety-specific response, also indicates a tissue-specific antioxidant response.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5136 ◽  
Author(s):  
Matheus Marcon ◽  
Ricieri Mocelin ◽  
Adrieli Sachett ◽  
Anna M. Siebel ◽  
Ana P. Herrmann ◽  
...  

Background The enriched environment (EE) is a laboratory housing model that emerged from efforts to minimize the impact of environmental conditions on laboratory animals. Recently, we showed that EE promoted positive effects on behavior and cortisol levels in zebrafish submitted to the unpredictable chronic stress (UCS) protocol. Here, we expanded the characterization of the effects of UCS protocol by assessing parameters of oxidative status in the zebrafish brain and reveal that EE protects against the oxidative stress induced by chronic stress. Methods Zebrafish were exposed to EE (21 or 28 days) or standard housing conditions and subjected to the UCS protocol for seven days. Oxidative stress parameters (lipid peroxidation (TBARS), reactive oxygen species (ROS) levels, non-protein thiol (NPSH) and total thiol (SH) levels, superoxide dismutase (SOD) and catalase (CAT) activities were measured in brain homogenate. Results Our results revealed that UCS increased lipid peroxidation and ROS levels, while decreased NPSH levels and SOD activity, suggesting oxidative damage. EE for 28 days prevented all changes induced by the UCS protocol, and EE for 21 days prevented the alterations on NPSH levels, lipid peroxidation and ROS levels. Both EE for 21 or 28 days increased CAT activity. Discussion Our findings reinforce the idea that EE exerts neuromodulatory effects in the zebrafish brain. EE promoted positive effects as it helped maintain the redox homeostasis, which may reduce the susceptibility to stress and its oxidative impact.


2014 ◽  
Vol 66 (3) ◽  
pp. 1075-1081
Author(s):  
Ivan Simic ◽  
Violeta Iric-Cupic ◽  
Rada Vucic ◽  
Marina Petrovic ◽  
Violeta Mladenovic ◽  
...  

The aim of the present study was to evaluate the subchronic effects of 3,4-methylenedioxymethamphetamine on several oxidative stress markers: index of lipid peroxidation (ILP), superoxide dismutase (SOD) activity, superoxide radical (O2.-) levels, and reduced glutathione (GSH) levels in the frontal cortex, striatum and hippocampus of the rat. The study included 64 male Wistar rats (200-250g). The animals were treated per os with of 5, 10, or 20 mg/kg of 3,4-methylenedioxymethamphetamine (MDMA) every day for 15 days. The subchronic administration of MDMA resulted in an increase in ILP, SOD and O2.-, and a decrease in GSH, from which we conclude that oxidative stress was induced in rat brain.


1999 ◽  
Vol 7 (1) ◽  
pp. 31-51 ◽  
Author(s):  
Klara D Vichnevetskaia ◽  
D N Roy

Increased levels of active oxygen species or free radicals can create an oxidative stress. Concentration of free radicals in living cells increases as a result of exposure to environmental stresses that lead to aging, carcinogenesis, and immunodeficiencies in animals, and membrane leakage, senescence, chlorophyll destruction, and decreased photosynthesis in plants. The antioxidative system of higher plants consists of enzymes, low molecular weight compounds (among them peptides, vitamins, flavonoids, phenolic acids, alkaloids, etc.), and integrated detoxification chains. Enzymatic defense in plants include enzymes capable of removing, neutralizing, or scavenging oxy-intermediates. Catalases and superoxide dismutases are the most efficient antioxidant enzymes. Free radicals cause cell damage by a lipid peroxidation mechanism, which results in a blockade of natural antioxidant systems. Application of synthetic antioxidants can assist in coping with oxidative stress. There are very few publications on effects of synthetic antioxidants on plant growth and physiology. One of the examples of such synthetic antioxidant is 2-methyl-4-dimethylaminomethyl-5-hydroxybenzimidazole (Ambiol), which substantially promoted growth of agricultural and forestry plant species. Ambiol also demonstrated antitranspirant properties, increasing drought tolerance of conifers and agricultural species. The response of plants to Ambiol is under high genetic control. The identification of genes responsible for the reaction of plants to Ambiol may lead to attempts in genetic engineering of organisms with increased tolerance to oxidative stress. It seems impossible to find a universal scavenger trapping all free radicals active in the organism. However, analysis of the structure–activity relationships in antioxidants can contribute to the search for effective antioxidants.Key words: oxidative stress, lipid peroxidation, free radicals, natural and synthetic antioxidants, Ambiol.


2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
Mika Reinisalo ◽  
Anna Kårlund ◽  
Ali Koskela ◽  
Kai Kaarniranta ◽  
Reijo O. Karjalainen

Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer’s disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jingwen Fan ◽  
Qi Pan ◽  
Qun Gao ◽  
Wenqing Li ◽  
Fei Xiao ◽  
...  

Subclinical hypothyroidism (SCH) is associated with diabetic peripheral neuropathy (DPN); however, the mechanism underlying this association remains unknown. This study is aimed at examining neurofunctional and histopathological alterations in a type 2 diabetes (T2DM) mouse model of SCH and investigating the impact of thyroid-stimulating hormone (TSH) in an in vitro DPN cell model established using RSC96 cells under high glucose (HG) and palmitic acid (PA) stimulation. Our results indicated that T2DM, in combination with SCH, aggravated abnormal glucose and lipid metabolism in T2DM and dramatically destroyed the peripheral nervous system by increasing paw withdrawal latency, decreasing motor nerve conduction velocity, and exacerbating ultrastructural deterioration of the damaged sciatic nerve caused by diabetes. Furthermore, the results of our in vitro experiments showed that TSH intensified HG/PA-induced RSC96 cell damage by inducing oxidative stress, mitochondrial dysfunction, and apoptosis. More importantly, TSHR knockout or inhibition of PA-induced TSHR palmitoylation could alleviate the apoptosis induced by TSH. Overall, in this study, the novel mechanisms by which TSH, as an independent risk factor for DPN progression, aggravating Schwann cell apoptosis and demyelination, are elucidated. These findings indicate that TSHR could be a potential target for both the prevention and treatment of DPN and, possibly, other microvascular diseases, and have implication in the clinical management of patients with DPN.


2021 ◽  
Author(s):  
Shi-Wei Li ◽  
Ming-Hui Chang ◽  
Wen-Jun Zhao ◽  
He-Lian Li ◽  
Hong-Jie Sun ◽  
...  

Abstract 2,6-dichlorobenzoquinone (2,6-DCBQ) is an emerging disinfection byproduct frequently detected in drinking water. Previous studies have indicated that 2,6-DCBQ causes oxidative stress damage in some live systems, but this has yet to be tested in vivo in mammals. In the present study, adult mice were exposed to 2,6-DCBQ for 30 d via gavage at 0 ~ 100 mg kg− 1 with the responses of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT]), key oxidative stress response genes (Heme oxygenase-1 [HO-1], NADPH quinone oxidoreductase 1 [NQO1] and glutamate-L-cysteine ligase catalytic subunit [GCLC]) in the Nrf2-keap1 pathway, and lipid peroxidation (malonaldehyde, MDA) as an indicator of oxidative damage being measured. Our results indicated that 2,6-DCBQ decreased the activities of SOD and CAT, repressed transcription of key genes in the Nrf2-keap1 pathway, and caused measurable oxidative damage. These results reveal the impact of 2,6-DCBQ in a model mammalian system and are key to understanding the potential impacts of 2,6-DCBQ in humans.


Sign in / Sign up

Export Citation Format

Share Document