scholarly journals Utilization of agricultural and industrial wastes for metal removal from aqueous solutions

2011 ◽  
Vol 13 (1) ◽  
pp. 20-22 ◽  
Author(s):  
Marta Biegańska ◽  
Ryszard Cierpiszewski

Utilization of agricultural and industrial wastes for metal removal from aqueous solutions In this study a possibility of obtaining sorbents from basketry wastes has been investigated. Therefore, adsorption of cadmium ions on wicker bark of Salix americana has been studied. The obtained experimental results were described by the Freundlich equation and adsorption kinetics by the pseudo-second order equation. The effect of pH on cadmium ions adsorption by S. americana was also investigated. It has been found that for the pH values ranging from 2 to 7 cadmium removal from the solution was held at almost constant level.

2013 ◽  
Vol 368-370 ◽  
pp. 692-696
Author(s):  
Wei Lan Lin ◽  
Jin Chuan Gu ◽  
Yu Heng Wang ◽  
Wen Yuan Wang

adsorption is a good method to remove phosphorus. In the experiment, lithium silica fume is used as the adsorption material, adsorption isotherms ,kinetics and dosage effects were examined. It shows that the adsorption kinetics data are consistent with the pseudo-second-order equation and the adsorption is easy to happen. Freundlich isotherm equation is fit for description of the adsorption. The maximum adsorption capacities on lithium silica fume is 1.166 mg/g. When dosage get to 12 g/l and the concentration of phosphorus solution is 2 mg/l, the removal rate reach to 95% at 308k.


2018 ◽  
Vol 775 ◽  
pp. 376-382 ◽  
Author(s):  
Alzhan Baimenov ◽  
Dmitriy Berillo ◽  
Leila Abylgazina ◽  
Stavros G. Poulopoulos ◽  
Vassilis J. Inglezakis

In this work, amphoteric cryogels based on N,N-dimethyl acrylamide, methacrylic acid and allylamine, crosslinked by N,N-methylenebisacrylamide were synthesized by free-radical polymerization in cryo-conditions. The synthesized cryogels were used for the removal of cadmium ions from aqueous solutions under different pH values. The chemical structure was studied by FTIR, porosity by nitrogen adsorption and morphology by scanning electron microscopy and texture analyzer. The amphoteric properties of cryogels were studied by zeta potential measurements. Adsorption tests revealed that cryogels exhibit 3 times higher adsorption capacity at pH 6.0 than at pH 4.0. The maximum adsorption capacity of the amphoteric cryogels for Cd2+ was 113 mg/g, at pH 6.0 and initial Cd2+ concentration 100 ppm. The results suggest that the predominant removal mechanism is ion exchange between sodium, which initially presents in the structure of the cryogel, and cadmium from the aqueous phase. Recovery studies suggested that the cryogels used can be regenerated and efficiently reused.


2013 ◽  
Vol 726-731 ◽  
pp. 2380-2383
Author(s):  
Li Xia Li ◽  
Xin Dong Zhai

Modified bentonite was used as adsorbent for the methylene blue adsorption in a batch process. Experimental results show that the adsorption kinetics is well described by pseudo-second-order model and the equilibrium data was better represented by the Freundlich isotherm model. The results revealed that the modified bentonite has the potential to be used as a good adsorbent for the removal of methylene blue from aqueous solutions.


2013 ◽  
Vol 726-731 ◽  
pp. 2111-2114
Author(s):  
Jing Wang ◽  
Yan Chen ◽  
Bo Yang ◽  
Juan Feng ◽  
Xiao Yan Lin

Waste beer yeast was utilized as adsorbent to remove Th4+ from simulated radioactive wastewater. Effects of various parameters including pH value, temperature, absorbent dosage, and absorption time on adsorption of Th4+ by waste beer yeast were studied. Beer yeast before and after adsorption was characterized by IR and SEM. The results show that the removal efficiency could be reached 95% at the optimized conditions. The adsorption kinetics was described well by the pseudo second-order equation.


2012 ◽  
Vol 463-464 ◽  
pp. 7-11 ◽  
Author(s):  
Ming Yan Dang ◽  
Hong Min Guo ◽  
Yan Kun Tan

Chitosan was crosslinked using epichlorohydrin as crosslinking agent to prepare crosslinked chitosan which was used as an adsorbent for the removal of Zn(II) from aqueous solutions. The adsorption prosperities of Zn(II) on crosslinked chitosan were studied, including the influence of pH value and the adsorption kinetics. The kinetics of adsorption was discussed using two kinetic models, the pseudo first-order and the pseudo second-order model. Results reveal that the crosslinked chitosan is suitable as adsorbent to remove Zn(II) from dilute solution. The rate parameters for the Zn(II) by crosslinked chitosan were also determined. It was shown that the adsorption kinetics of Zn(II) could be best described by the pseudo second-order model and the adsorption process may involve a physical adsorption.


2015 ◽  
Vol 22 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Krzysztof Kuśmierek ◽  
Andrzej Świątkowski

Abstract Adsorptive removal of 2-, 3- and 4-chlorophenol from aqueous solutions by granular activated carbon was studied. The influence of different experimental parameters like initial concentration, carbon dosage and pH on the adsorption of monochlorophenols were evaluated. The influence of type of acid and base used for water acidification or alkalization was also tested. The results indicate that acidic pH is favorable for the adsorption of chlorophenols; however the type of acid or alkali used for the change of pH has a little influence and did not significantly affect the adsorption efficiency. The pH played an important role in the adsorption kinetics of chlorophenols at pH values above the pKa values of the compounds, while little influence on adsorption rate was observed if pH was decreased below the pKa values


2011 ◽  
Vol 347-353 ◽  
pp. 281-284
Author(s):  
Peng Ge ◽  
Li Juan Wan ◽  
Ya Jing Xu

Among the investigated clays and minerals (kaolinite, natural zeolite, manual zeolite, bentonite, sepiolite, sepiolite amianthus, tremolite amianthus, vermiculite and baritite), the baritite clay was selected as the optimal adsorbent for aqueous Cr (VI). The Cr (VI) adsorption capacity on baritite clay reached as high as 39.01 mg∙g−1 at 20°C. Then the adsorption kinetics of Cr (VI) by the baritite clay were investigated in details. Results showed that the pseudo-second-order model was a suitable description for the adsorption kinetics and fitted well with the experimental data.


2013 ◽  
Vol 690-693 ◽  
pp. 438-441 ◽  
Author(s):  
Tao Feng ◽  
Lei Xu

The chitosan/rectorite composite was prepared and characterized by XRD. The interlayer distance of rectorite was enlarged from 2.53 nm to 3.01 nm. Congo red (CR) was selected as a model anionic dye and the adsorption tests of CR onto chitosan/rectorite composite were carried out. The results showed that the CR adsorption process is dependent on pH and initial CR concentration and temperature. The maximal CR uptake by chitosan/rectorite composite was 73.8 mg g-1 in the test. Adsorption kinetics studies indicated that the sorption processes were better fitted by pseudo-second order equation.


2016 ◽  
Vol 73 (9) ◽  
pp. 2132-2142 ◽  
Author(s):  
F. Ferrarini ◽  
L. R. Bonetto ◽  
Janaina S. Crespo ◽  
M. Giovanela

Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer–Emmett–Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.


Sign in / Sign up

Export Citation Format

Share Document