scholarly journals Adjustment coefficients for planimetric analysis of the granulometry of coarse-grained sediments

Geologos ◽  
2011 ◽  
Vol 17 (4) ◽  
pp. 221-226 ◽  
Author(s):  
Małgorzata Pisarska-Jamroży ◽  
Tomasz Kossowski ◽  
Jerzy Jamroży

Adjustment coefficients for planimetric analysis of the granulometry of coarse-grained sedimentsThe relationship between results from granulometric analyses of by sieving and by planimetry was investigated by numerical simulation of cubes filled with boulders, cobbles and pebbles. Cross-sections through the sediment were simulated and compared with photos of an actual outcrop wall. Volumes estimated on the basis of planimetric analysis using the cross-sections were compared with sieve analyses, thus allowing to determine adjustment coefficients. The coefficients for pebbles and cobbles have a small standard error, but are larger for boulders, which might be a consequence of too small areas formed by the cross-sections.

Measurements of the cross sections for the reactions 27 Al( n , α ) 24 Na and 56 Fe( n, p ) 56 Mn for neutrons of energy 13.5 ± 0.1 MeV have been made by a radioactivation method. The neutron flux was determined by a variant of the 'associated particle’ method, in which the α -particles produced concurrently with the neutrons from the D + T reaction were estimated in terms of the volume of helium which accumulated when they were brought to rest in an aluminium foil. Cross section values obtained at 13.5 MeV were: for 27 Al( n , α ): 118.1 ± 6.0 mb : for 56 Fe( n, p ): 106.7 ± 4.7 mb. The errors quoted include both the standard error on the mean of the experimental values and an estimate of possible residual systematic errors. The excitation functions for both reactions in the energy region 13.5 to 14.8 MeV have also been investigated, in order to provide secondary cross section values over this range of energies. At 14.8 MeV the values found were: 27 Al( n , α )103.6 ± 5.5 mb; 56 Fe( n, p )96.7 ± 4.5 mb.


2018 ◽  
Vol 18 (4) ◽  
pp. 362-378
Author(s):  
Yu. A. Gosteev ◽  
A. D. Obukhovskiy ◽  
S. D. Salenko

Introduction. The technique of numerical modeling of the transverse flow over span structures of bridges on the basis of the two-dimensional URANS (Unsteady Reynolds-averaged Navier-Stokes) approach used in the modern methods and software packages for computational fluid dynamics is verified. The work objective was debugging and experimental substantiation of this technique with the use of the database on the aerodynamic characteristics of the cross-sections of span structures of girder bridges of standard shapes pre-developed by the authors.Materials and Methods. A numerical simulation of the transverse flow of low-turbulent (smooth) and turbulent air flows around the bridge structures in a range of practically interesting attack angles is carried out. SST  k − ω turbulence model was used as the closing one. The technique was preliminarily tested on the check problem for the flow of the rectangular crosssection beams. Calculations were carried out using the licensed ANSYS software.Research Results. The calculated dependences on the attack angle of the aerodynamic coefficients of forces (drag and lift) and the moment of the cross sections of the girder bridges of standard shapes are obtained. These data refer to the span structures at the construction phase (without deck and parapets, without parapets) and operation phase, under the conditions of model smooth and turbulent incoming flow. The latter allows us to outline the boundaries for more weighted estimates of the aerodynamic characteristics of thegirder bridges in a real wind current. The best agreement with the experimental data was obtained from the drag of the cross-section. The magnitude of the lifting force is more sensitive to the presence and extent of the separation regions, so its numerical determination is less accurate. The reproduction of the angle-of-attack effect on the aerodynamic moment of the cross-section is the most challenging for the majority of configurations.Discussion and Conclusions. Comparison of the calculated and experimental data indicates the applicability of the URANS approach to the operational prediction of the aerodynamic characteristics of the single-beam span structures. In the case of multi-beam span structures, where the aerodynamic interference between separate girders plays an important role, the URANS approach must apparently give way to more accurate eddy-resolving methods. The results obtained can be used in the aerodynamic analysis of structures and in practice of the relevant design organizations in the field of transport construction.


2014 ◽  
Vol 59 (1-4) ◽  
pp. 9-24
Author(s):  
Władysław Pyszyński

The arrangement of rays in cross sections of secondary phloem and the wood grain on the tangential and radial surfaces of wood columns from <i>Pinus silvestris</i> and <i>Picea abies</i> was studied. It was found that in most cases the rays were slanted and deviated from the geometric radius in either the S-direction (to the left) or in the Z-direction (to the right) when the cross section of the stem was observed from above. The S-type deviation dominated in those stems in which the wood grain in the peripheral parts was of the S-type (left-oriented), whereas the deviation of rays in the Z-direction was found to dominate in those objects, in which the wood grain in the peripheral parts of the stem was of the Z-type (right-oriented).


2010 ◽  
Vol 143-144 ◽  
pp. 873-878
Author(s):  
Guang Jin Wang ◽  
Xiang Yun Kong ◽  
Yi Lei Gu ◽  
Chun He Yang

The strength parameters of granular coarse-grained soil are the critical factor that affects the stability of ultra-high dump. The soil particles of different size have no sorting and random distribution, which leads to the initial fabric of sample grain uncontrolled in the laboratory test of coarse-grained soil, therefore, only relying on the laboratory testing is difficult to obtain the reliable strength parameters of coarse-grained soil. Based on Cellular Automata method, combining the laboratory triaxial tests of coarse-grained soil developed the HHC-CA model which generated the coarse-grained soil samples of different initial fabric of grain to characterize the heterogeneous and random distribution of coarse-grained soil grain group. Then by means of FLAC3D, conducting triaxial numerical simulation tests of coarse-grained soil and discussing the relationship between the gravel contents of samples shear band and samples and internal friction angle. Moreover, the shear strength model for different coarse-grained contents is established. Numerical simulation results indicated that the relationship between internal friction angle of coarse-grained soil and gravel contents of samples shear band were increasing function in the same size grading. According to the increasing of samples gravel contents, the internal friction angle might reduce, but the mean internal friction angle significantly increased with the increment of samples gravel contents.


2012 ◽  
Vol 476-478 ◽  
pp. 2209-2212
Author(s):  
Yuan Fang ◽  
Cheng Hu Wang ◽  
Hui Fang Liang ◽  
Li Li Bao ◽  
Xiao Hong Zhou

Based on two typical cross-sections such as the circular and the near-elliptical of PTT/PET bi-component filament, the crimp modeling was established. It can be used to describe the relationship among the crimp morphology in Longitudinal, the cross-section characteristics and the shrinkage difference of two components. The cross section characteristics of PTT/PET bi-component filament with nearly circular and elliptical cross section were obtained. The average ρ∆ of T400 made by Dupont is 17.46μm and that made by Huvis is 11.09μm.


1971 ◽  
Vol 32 (1) ◽  
pp. 7-9 ◽  
Author(s):  
J. Galin ◽  
D. Guerreau ◽  
M. Lefort ◽  
X. Tarrago

1991 ◽  
Vol 65 (03) ◽  
pp. 263-267 ◽  
Author(s):  
A M H P van den Besselaar ◽  
R M Bertina

SummaryIn a collaborative trial of eleven laboratories which was performed mainly within the framework of the European Community Bureau of Reference (BCR), a second reference material for thromboplastin, rabbit, plain, was calibrated against its predecessor RBT/79. This second reference material (coded CRM 149R) has a mean International Sensitivity Index (ISI) of 1.343 with a standard error of the mean of 0.035. The standard error of the ISI was determined by combination of the standard errors of the ISI of RBT/79 and the slope of the calibration line in this trial.The BCR reference material for thromboplastin, human, plain (coded BCT/099) was also included in this trial for assessment of the long-term stability of the relationship with RBT/79. The results indicated that this relationship has not changed over a period of 8 years. The interlaboratory variation of the slope of the relationship between CRM 149R and RBT/79 was significantly lower than the variation of the slope of the relationship between BCT/099 and RBT/79. In addition to the manual technique, a semi-automatic coagulometer according to Schnitger & Gross was used to determine prothrombin times with CRM 149R. The mean ISI of CRM 149R was not affected by replacement of the manual technique by this particular coagulometer.Two lyophilized plasmas were included in this trial. The mean slope of relationship between RBT/79 and CRM 149R based on the two lyophilized plasmas was the same as the corresponding slope based on fresh plasmas. Tlowever, the mean slope of relationship between RBT/79 and BCT/099 based on the two lyophilized plasmas was 4.9% higher than the mean slope based on fresh plasmas. Thus, the use of these lyophilized plasmas induced a small but significant bias in the slope of relationship between these thromboplastins of different species.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


2011 ◽  
Vol 39 (1) ◽  
pp. 44-58 ◽  
Author(s):  
Y. Masumoto ◽  
Y. Iida

Abstract The purpose of this work is to develop a new analytical method for simulating the microscopic mechanical property of the cross-linked polymer system using the coarse-grained molecular dynamics simulation. This new analytical method will be utilized for the molecular designing of the tire rubber compound to improve the tire performances such as rolling resistance and wet traction. First, we evaluate the microscopic dynamic viscoelastic properties of the cross-linked polymer using coarse-grained molecular dynamics simulation. This simulation has been conducted by the coarse-grained molecular dynamics program in the OCTA) (http://octa.jp/). To simplify the problem, we employ the bead-spring model, in which a sequence of beads connected by springs denotes a polymer chain. The linear polymer chains that are cross-linked by the cross-linking agents express the three-dimensional cross-linked polymer network. In order to obtain the microscopic dynamic viscoelastic properties, oscillatory deformation is applied to the simulation cell. By applying the time-temperature reduction law to this simulation result, we can evaluate the dynamic viscoelastic properties in the wide deformational frequency range including the rubbery state. Then, the stress is separated into the nonbonding stress and the bonding stress. We confirm that the contribution of the nonbonding stress is larger at lower temperatures. On the other hand, the contribution of the bonding stress is larger at higher temperatures. Finally, analyzing a change of microscopic structure in dynamic oscillatory deformation, we determine that the temperature/frequency dependence of bond stress response to a dynamic oscillatory deformation depends on the temperature dependence of the average bond length in the equilibrium structure and the temperature/frequency dependence of bond orientation. We show that our simulation is a useful tool for studying the microscopic properties of a cross-linked polymer.


2017 ◽  
Vol 168 (3) ◽  
pp. 127-133
Author(s):  
Matthew Parkan

Airborne LiDAR data: relevance of visual interpretation for forestry Airborne LiDAR surveys are particularly well adapted to map, study and manage large forest extents. Products derived from this technology are increasingly used by managers to establish a general diagnosis of the condition of forests. Less common is the use of these products to conduct detailed analyses on small areas; for example creating detailed reference maps like inventories or timber marking to support field operations. In this context, the use of direct visual interpretation is interesting, because it is much easier to implement than automatic algorithms and allows a quick and reliable identification of zonal (e.g. forest edge, deciduous/persistent ratio), structural (stratification) and point (e.g. tree/stem position and height) features. This article examines three important points which determine the relevance of visual interpretation: acquisition parameters, interactive representation and identification of forest characteristics. It is shown that the use of thematic color maps within interactive 3D point cloud and/or cross-sections makes it possible to establish (for all strata) detailed and accurate maps of a parcel at the individual tree scale.


Sign in / Sign up

Export Citation Format

Share Document