scholarly journals Analisis Iklim Mikro di Greenhouse dengan Atap Tipe Arch untuk Budidaya Bunga Krisan Potong

2019 ◽  
Vol 4 (1) ◽  
pp. 24
Author(s):  
Yohanes Setiyo ◽  
S Sumiyati ◽  
Ni Putu Yuliasih

Petani di Desa Candikuning membangun greenhouse untuk budidaya bunga krisan potong tanpa melakukan perhitungan teknis. Greenhouse tersebut dibangun berdasarkan pada ketersediaan bahan baku lokal, biaya tersedia dan topografi wilayah. Analisis iklim mikro pada greenhouse dengan atap tipe arch untuk optimasi kecepatan pertumbuhan dan kualitas bunga krisan yang dihasilkan menjadi obyek penelitian. Data-data yang dikumpulkan adalah: data iklim mikro (suhu, kelembaban, dan intensitas cahaya), data pertumbuhan tanaman krisan (tinggi tanaman)  dan data kualitas bunga (jumlah dan diameter bunga). Hasil penelitian terhadap intensitas cahaya  rata-rata di greenhouse dengan tinggi atap 2,5 m, 3,0 m dan 3,5 m masing-masing adalah : 27.6 ± 5.5 k.lux, 27,5 ± 4,3 k.lux dan 29.5 ± 2,5 k.lux dengan suhu rata-rata adalah 21,1 ±0,2 oC, 27,5 ±0,17 oC dan 21,2 ±0,3 oC. Intensitas cahaya yang memasuki ruangan greenhouse sebesar 20 – 30 % dari intensitas cahaya yang mengenai atap bangunan. Kelembaban udara di ruang greenhouse tersebut masing-masing adalah 73,3 ± 0,5%, 77,5 ± 0,4 %, dan 86,3 ± 0,7 %. Hal ini menunjukkan bahwa jumlah energi radiasi matahari yang diterima atap dan dinding greenhouse untuk menaikkan suhu ruangan dan intensitas cahaya dari greenhouse secara efektif untuk mendukung proses fotosintesis, sehingga tanaman berbunga pada ketinggian 70-80 cm dengan bunga pertama berdiameter rata-rata 7,5 ± 0,6 cm.   Farmers in Candikuning Village built a greenhouse for chrysanthemum cut flowers cultivation without performing technical calculations. The greenhouse was built based on the availability of local raw materials, available costs, and regional topography. Micro-climate analysis on roof-type greenhouse with arch type to optimize the growth speed and quality of the chrysanthemum produced is the object of research. The data collected are microclimate data (temperature, humidity, and light intensity), data on the growth of chrysanthemum plants (plant height) and flower quality data (number and diameter of flowers). The results of the study on the average light intensity in greenhouses with roof height of 2.5 m, 3.0 m and 3.5 m respectively are: 27.6 ± 5.5 k.lux, 27.5 ± 4.3 k.lux and 29.5 ± 2.5 k.lux with an average temperature of 21.1 ± 0.2 oC, 27.5 ± 0.17 oC and 21.2 ± 0.3 oC. The intensity of the light entering the greenhouse room is 20-30% of the intensity of light that affects the roof of the building. The air humidity in the greenhouse space is 73.3 ± 0.5%, 77.5 ± 0.4%, and 86.3 ± 0.7%, respectively. This shows that the amount of solar radiation energy received by the roof and walls of the greenhouse to increase the room temperature and light intensity from the greenhouse effectively to support photosynthesis so that the plants flower at an altitude of 70-80 cm with the first flower with an average diameter of 7.5 ± 0.6 cm

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 543a-543
Author(s):  
Muhammad Maqbool ◽  
Steven E. Newman

Twelve snapdragon cultivars of different response groups were grown in a double polyethylene greenhouse to determine the impact of no root-zone heat (RZH) and 22C RZH at 15 or 20C night air temperature (NT) on flower quality. Data were recorded when the first floret of each stem showed color and harvested when the lower third of the florets were open, Flower quality was evaluated at harvest based upon stem length and fresh weight using Society of American Florists standards. Cultivars `Butterfly White II', `Hercules', `Navajo', and West Virginia' (Group II) were the first to bloom under 20C NT regardless of RZH; whereas cultivars `Oklahoma', Houston', and `Potomac Pink' (Group IV) were delayed. Similar trends were observed under 15C NT, but the crop was harvested a few days earlier with RZH as compared to no heat. Flower quality was better under 15C NT.


2021 ◽  
Vol 13 (11) ◽  
pp. 6052
Author(s):  
Paola Comodi ◽  
Azzurra Zucchini ◽  
Umberto Susta ◽  
Costanza Cambi ◽  
Riccardo Vivani ◽  
...  

A multi-methodic analysis was performed on five samples of fly ashes coming from different biomasses. The aim of the study was to evaluate their possible re-use and their dangerousness to people and the environment. Optical granulometric analyses indicated that the average diameter of the studied fly ashes was around 20 µm, whereas only ~1 vol% had diameters lower that 2.5 µm. The chemical composition, investigated with electron probe microanalysis, indicated that all the samples had a composition in which Ca was prevalent, followed by Si and Al. Large contents of K and P were observed in some samples, whereas the amount of potentially toxic elements was always below the Italian law thresholds. Polycyclic aromatic hydrocarbons were completely absent in all the samples coming from combustion plants, whereas they were present in the fly ashes from the gasification center. Quantitative mineralogical content, determined by Rietveld analysis of X-ray powder diffraction data, indicated that all the samples had high amorphous content, likely enriched in Ca, and several K and P minerals, such as sylvite and apatite. The results obtained from the chemo-mineralogical study performed make it possible to point out that biomass fly ashes could be interesting materials (1) for amendments in clayey soils, as a substitution for lime, to stimulate pozzolanic reactions and improve their geotechnical properties, thus, on the one hand, avoiding the need to mine raw materials and, on the other hand, re-cycling waste; and (2) as agricultural fertilizers made by a new and ecological source of K and P.


2020 ◽  
Vol 47 (No. 1) ◽  
pp. 45-52
Author(s):  
Emina Mladenović ◽  
Sandra Cvejić ◽  
Siniša Jocić ◽  
Nemanja Ćuk ◽  
Jelena Čukanović ◽  
...  

The aim of this research was to determine the optimum planting density for the production of high-quality cut flowers with desirable characteristics. 25 single-stem ornamental sunflower genotypes were planted at different densities and evaluated for flowering time, flower diameter, and stem circumference and length over a two-year production cycle. Three spacing patterns were used: 25 × 25 cm, 30 × 30 cm, and 70 × 30 cm, which led to the planting densities of 160 000, 90 000, and 60 000 plants/ha, respectively. The plant density had the most important effect on the stem circumference, flower diameter, and stem length (total variation 52, 60, and 58%, AMMI analysis) and a small effect on the flowering time (total variation 1%, AMMI analysis). Based on environment-focused scaling, all high-density environments could be suitable for the production of single-stem sunflower genotypes. The results demonstrated the adaptation of several sunflower genotypes G9, G11, G12, G21, and G22 as the most suitable based on the optimum flower diameter, stem circumference, and stem length. These results may lead to progress in growing ornamental sunflowers as a cut flower.


Author(s):  
Thắng Thanh Trần ◽  
Triều Phương Hoàng ◽  
Hương Thanh Trần

Chrysanthemum indicum cultivar Sakura is one of the daisy cultivars. It is beautiful, but the vase life of cutting flowers is very short. The decrease in flower quality during storage and transportation is a big problem in the flower export. In this study, the morphological, physiological, and biochemical changes during the vase life of cutting flowers were analyzed. The effects of plant growth regulators and sucrose at different concentrations on the vase life of cut flowers were investigated. The vase life of Sakura cutting flowers includes two stages: (1) the growing and blooming of flower, (2) senescence of cutting flowers. During the growing and blooming, the color of disk flowers changed from green to yellow, and the ray flowers continued to expand the dimension leading to an increase in the diameter of the head flower. The senescence of cutting flowers was initiated by the reduction of chlorophyll content in the leaf, which was located at the base. Then, the ray flowers were discolored. In the senescence stage, the respiration rate and the content of the abscisic acid of head flower increased continuously. In contrast, the water absorption, the content of starch, total sugar, salicylic acid, auxin, cytokinin, and gibberellin decreased strongly. The treatment of 10 g/L sucrose, 2 mg/L NAA, 5 mg/L BA, and 20 mg/L salicylic acid in 24 hours extended the vase life of Sakura cutting flowers and the diameter of the head flower.  


2021 ◽  
Vol 87 (4) ◽  
pp. 26-31
Author(s):  
A. N. Fokanov ◽  
V. F. Podurazhnaya ◽  
A. V. Tebyakin

Beryllium products exhibiting a low level of absorption of the radiation energy are widely used in scientific instrumentation design (x-ray technology, radiation detectors, etc.). We present the results of studying the leak tightness of products (disks, plates) made of technical sintered beryllium of standard purity and foil obtained by «warm» rolling from high-purity beryllium. The relevant standards and requirements for testing are given. The leak tightness control was performed using mass spectrometric helium leak detectors with forevacuum backing pumps (oil and dry diaphragm pumps) and specialized vacuum equipment. The parameters of tightness of samples made of technical sintered beryllium were determined. The level of the helium signal during blowing was (0.6 – 7.4) × 10–11 Pa · m3/sec, which corresponds to the tightness standard of foreign analogues and matches the requirements of domestic manufacturers of x-ray equipment. The data spread tended to increase due to the growth of the background value. The obtained results can be used to improve high-tech equipment intended for flaw detection, medical devices, rapid analysis of ore raw materials, radiation safety equipment, etc.


2014 ◽  
Vol 1073-1076 ◽  
pp. 743-746
Author(s):  
Xian Li ◽  
Jiang Wu ◽  
Xue Mei Qi ◽  
Chao En Li ◽  
Chong Zhang ◽  
...  

TiO2 hollow sphere was synthesized by hydrothermal method using Trifluoroacetic acid (TFA) and Ti (SO4)2 as raw materials. The photocatalytic properties of TiO2 hollow sphere were evaluated by the photocatalytic oxidization of elemental mercury (Hg0) in simulated flue gas. The as-prepared samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy and nitrogen sorption/desorption. The results show that only anatase phase for TiO2 the hollow sphere is obtained. The average diameter is about 800nm and the shell thickness was about 200nm. The sample prepared with TFA has better photocatalytic properties than P25.


2007 ◽  
Vol 336-338 ◽  
pp. 939-941
Author(s):  
Yong Qiang Meng ◽  
Zhi Min Bai ◽  
Chang Hong Dai ◽  
Bao Bao Zhang

A new method for producing silicon carbide platelets with low cost and high yield was introduced. The silicon carbide platelets were synthesized by powder-heating techniques with carbon black and SiO2 powder as raw materials and CoCl2 as catalyst. The starting mixtures were heated at a temperature in the range of 1800-2000°C for the duration of about 2-4h to produce substantially completely unagglomerated silicon carbide platelets with a thickness of 5-20μm and the average diameter of 50-200μm. Compared to the conventional heating, the powder-heating technique is advantageous of less investment on equipment, easy to manufacture and convenient to operate. Furthermore, it is very suitable for realizing the scaled production because of the lower synthesizing temperature, shorter reaction time and greater output.


Author(s):  
R. M. Guppy ◽  
S. P. Vines ◽  
S. J. Wisbey

The UK has significant quantities of radioactive waste, which have arisen over the past fifty years or so, largely as a result of nuclear power, reprocessing and defence programmes. The intermediate level wastes arising as a result of these activities, exhibit a high level of physical and chemical diversity, and must be managed safely in a way that protects existing and future generations and the environment. Development work has been conducted since the early 1980s to identify suitable conditioning materials and techniques that are compatible with the needs of safe long-term management, including interim storage, transport and future deep geological disposal. From these studies cementation emerged as the one medium which could satisfy all the key waste management criteria. Other materials were not ruled out and may offer benefits in specific applications. The advantages of conditioning ILW with cement include: • the extensive experience of its use in a wide variety of contexts; • the raw materials are relatively cheap and have a long shelf life; • cement is processed in relatively simple plant at room temperature, with safety and cost benefits for plant operators; • the product is fire resistant and of relatively low toxicity; • cement is capable of immobilising a wide range of wastes ranging from solids to aqueous slurries; • cement provides desirable product properties. Desirable properties include: • suitable strength, • chemical control of radionuclide leading to enhanced retention, • good corrosion protection for steels, • low permeability, • tolerance to radiation, • durability over extended timescales, and • good radiation self-shielding properties. Several waste packaging plants are now operational in the UK using cement-based encapsulants. These are currently conditioning ILW for interim storage, in a manner suitable for future transport and compatible with the Nirex phased deep disposal concept. This paper will describe the development of cement-based encapsulants to meet the needs of UK radioactive wastes, and will provide examples of the supporting product quality data.


2020 ◽  
Vol 23 (4) ◽  
pp. 1818-1827
Author(s):  
Tu Thi Anh Le

Introduction: The procedure to synthesize silver nanoparticles (SNPs) from Prunus cerasoides leaf extract and their effect on vase life and flower quality of cut carnation were investigated. Methods: SNPs were bio-synthesized from Prunus cerasoides leaf extract and characterized by using UV-Vis technique, TEM, and SEM images. The postharvest responses of carnation cut flowers to the biosynthesis SNPs were evaluated through vase life, relative fresh weight, vase solution uptake, flower diameter of cut carnation. Results: SNPs were synthesized under optimum conditions, including using the extract of leaf heating at 60 oC in 30 min, 4 mM of silver nitrate, pH of 11, and 180 min of reaction time. SNPs exhibited antimicrobial activity and then alleviated the bacterial development in the preservative solution. All treatments with SNPs had improved the vase life and quality of cut carnation compared to the control. A vase solution containing 2% sucrose enhanced the carnation cut flowers. Conclusions: The preservative solution containing 25 ppm SNPs and 2% sucrose showed the best effect. SNPs could be used as a promising antibacterial agent applied in the preservative solution for cut carnation flowers.


Author(s):  
Galina V. Akimochkina ◽  
Elena S. Rogovenko ◽  
Elena V. Fomenko

The crush test and acid resistance of microsphere narrow fractions with average diameter dav of 5, 8 and 25 μm of the SiO2–Al2O3–FeO system and with dav of 4 and 10 μm the CaO–SiO2–Al2O3– FeO system separated from fly ash from pulverized combustion of Ekibastuz and Irsha-Borodinsky coals were studied. It has been established that all investigated ash fractions of both raw materials are characterized by high strength: microspheres of a larger narrow fraction with dav = 25 μ m a re not destroyed by compressive loading at pressures up to 51.7 MPa, dispersed narrow fractions of microspheres with dav ≤ 10 μm – up to 68.9 MPa. Microsphere narrow fractions with aluminosilicate composition have satisfactory acid resistance; the weight loss after treatment with 15 % hydrochloric acid at 65 °C for 30 minutes was 10–15 wt. %


Sign in / Sign up

Export Citation Format

Share Document