SiC Platelets Synthesized by Powder-Heating Technique

2007 ◽  
Vol 336-338 ◽  
pp. 939-941
Author(s):  
Yong Qiang Meng ◽  
Zhi Min Bai ◽  
Chang Hong Dai ◽  
Bao Bao Zhang

A new method for producing silicon carbide platelets with low cost and high yield was introduced. The silicon carbide platelets were synthesized by powder-heating techniques with carbon black and SiO2 powder as raw materials and CoCl2 as catalyst. The starting mixtures were heated at a temperature in the range of 1800-2000°C for the duration of about 2-4h to produce substantially completely unagglomerated silicon carbide platelets with a thickness of 5-20μm and the average diameter of 50-200μm. Compared to the conventional heating, the powder-heating technique is advantageous of less investment on equipment, easy to manufacture and convenient to operate. Furthermore, it is very suitable for realizing the scaled production because of the lower synthesizing temperature, shorter reaction time and greater output.

2008 ◽  
Vol 368-372 ◽  
pp. 824-826 ◽  
Author(s):  
Yong Qiang Meng ◽  
Chang Hong Dai ◽  
Zu Wei Song

A new method for producing silicon carbide platelets with low cost and high yield was introduced. The silicon carbide platelets were synthesized by double-heating technique with carbon black and SiO2 powder as raw materials without using any catalysts. The starting mixtures were heated at a temperature in the range of 1800-2000°C for the duration of about 2-4h to produce substantially completely unagglomerated silicon carbide platelets with the thickness of 5-15μm and the average diameter of 50-150μm. Compared to the conventional heating, double-heating technique has different heating mechanism and has advantages of less investment for equipment, easy to manufacture and convenient to operate. Furthermore, it is very suitable for realizing the scaled production because of the lower synthesizing temperature, shorter reaction time and greater output.


2007 ◽  
Vol 336-338 ◽  
pp. 1294-1296
Author(s):  
Ru Zhao ◽  
Chang Hong Dai ◽  
Yi Cui ◽  
Zu Wei Song

A new technique of mass-producing silicon carbide whiskers at a low cost is introduced in this paper. Silicon carbide whiskers are synthesized by double-heating technique with the activated carbon and silica gel as raw material and CoCl2 as catalyst. The results indicate that the silicon carbide whiskers with the average diameter of 0.2μm, length of 10-50μm and high content of 81% can be obtained at a lower temperature of 1300°C and a shorter time of 1.5h. Compared with the conventional heating, the double-heating technique is suitable for realizing the scaled production because of the lower whiskerssynthesizing temperature, shorter reaction time and greater output.


2019 ◽  
Vol 16 (8) ◽  
pp. 676-682
Author(s):  
Ankusab Noorahmadsab Nadaf ◽  
Kalegowda Shivashankar

The polycyclic dihydropyridine nucleus represents the heterocyclic system of invaluable core motifs with wide applications in chemical, biological and physical properties. Although this kind of compounds have been extensively synthesized by other groups, the synthesis of these compounds under CFL light intensity were not explored. The synthesis of polycyclic dihydropyridine derivatives were achieved through the reaction of 4-hydroxycoumarin, aromatic aldehydes and ammonium acetate under CFL light irradiation conditions. A series of polycyclic dihydropyridine derivatives were prepared under CFL light irradiation conditions with high yield, short reaction time, ambient condition and without the use of catalyst. The results displayed an efficient method for the synthesis of polycyclic dihydropyridine derivatives. Clean profile, short reaction time, low cost and use of CFL light intensity instead of catalyst making it a genuinely green protocol.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.


2019 ◽  
Vol 12 (2) ◽  
pp. 83 ◽  
Author(s):  
Carlos Eduardo Peixoto da Cunha ◽  
Edson Silvio Batista Rodrigues ◽  
Morgana Fernandes Alecrim ◽  
Douglas Vieira Thomaz ◽  
Isaac Yves Lopes Macêdo ◽  
...  

Diclofenac (DIC) is a non-steroidal anti-inflammatory drug of wide use around the world. Electroanalytical methods display a high analytical potential for application in pharmaceutical samples but the drawbacks concerning electrode fouling and reproducibility are of major concern. Henceforth, the aim of this work was to propose the use of alternative low-cost carbon black (CB) and ionic liquid (IL) matrix to modify the surface of pencil graphite electrodes (PGE) in order to quantify DIC in raw materials, intermediates, and final products, as well as in stability assays of tablets. The proposed method using CB+IL/PGE displayed good recovery (99.4%) as well as limits of detection (LOD) of 0.08 µmol L-1 and limits of quantification (LOQ) of 0.28 µmol L−1. CB+IL/PGE response was five times greater than the unmodified PGE. CB+IL-PGE stands as an interesting alternative for DIC assessment in different pharmaceutical samples.


2001 ◽  
Vol 05 (04) ◽  
pp. 376-380 ◽  
Author(s):  
DOMINIC A. DAVIES ◽  
CHRISTINA SCHNIK ◽  
JACK SILVER ◽  
JOSE L. SOSA-SANCHEZ ◽  
PHILIP G. RIBY

The microwave heating synthesis of (phthalocyaninato)bis(chloro)silicon(IV) prepared from diiminoisoindolene and silicon tetrachloride in quinoline has been shown to be rapid (5 min reaction time compared to 30 min with thermal heating) and results in a high yield (91% compared to 71% using thermal heating). A modified microwave ashing furnace was used to heat the reaction mixture. The high yield has led to a reduction in the purification time to 1 h (compared to 4 h or more using conventional heating).


2021 ◽  
Vol 10 (3) ◽  
pp. 2525-2534

An efficient, green, and cost-effective synthesis of benzylpyrazolyl coumarin by one-pot four-component condensation of hydrazine hydrate or phenyl hydrazine, ethyl acetoacetate, aromatic aldehyde, and 4-hydroxycoumarin in the presence of Amberlite IR-120 as a catalyst in an aqueous medium has been reported. Shorter reaction time, operation simplicity, low cost of catalyst, and aqueous medium are key advantages of this method for synthesizing benzylpyrazolyl coumarin in moderate to high yield.


2019 ◽  
Vol 16 (8) ◽  
pp. 683-687
Author(s):  
Chuanhuan Chen ◽  
A. Xuejiao ◽  
Xia Li ◽  
Guoli Huang ◽  
Bo Liu

We have developed a new method for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones in good to excellent yields via phosphomolybdic acid (PMA)-catalyzed cyclocondensation of 2- aminobenzamides with aldehydes or ketones in N,N-dimethylformamide (DMF) at room temperature. The present method proves to be efficient in terms of short reaction time, high yield, simple workup and easy purification.


2008 ◽  
Vol 368-372 ◽  
pp. 831-833
Author(s):  
Chang Hong Dai ◽  
Zu Wei Song ◽  
Ru Zhao

A new heating apparatus for synthesizing SiC whiskers was introduced. SiC whiskers were synthesized in electric field furnace with carbon black and SiO2 powders as raw materials and some influencing factors were discussed. SiC whiskers with diameter of 0.1-0.4μm, length of 5-70μm and average purity of 99.6% were acquired at lower temperatures of 1200-1400°C for a shorter holding time of 2-4h. The results showed that the high voltage field has great catalysis action on synthetic of SiC whiskers by reducing activation energy and enhancing reaction speed.


2014 ◽  
Vol 910 ◽  
pp. 279-282 ◽  
Author(s):  
Ching Wen Lou ◽  
Ya Lan Hsing ◽  
Wen Hao Hsing ◽  
Jia Horng Lin

Non-woven textile industry in an emerging field, with the process short, high yield, low cost and wide source of raw materials, but also has excellent performance of many functions on, making non-woven over the past half century gained textiles attention and consumers of all ages. The proportion of the world of non-woven fiber material used in the product, 85% in rayon ,and the other 15% in natural fibers, polyester fibers which accounted for the largest proportion of use. The experiment uses a low melting point polyester fiber (LPET) 20%, three-dimensional hollow curly polyester fiber (TPET) and recycled far infrared fiber (REPET) 40% each as the basic conditions change pressing temperature 100 °C-140 °C, in order to observe and compare the effects of temperature on the non-woven fabric, this experiment tests including air permeability, tensile strength testing, infrared testing and SEM, respectively in different hot pressing temperature, each of the non-woven hot pressing temperatures sample go through microscopic to analysis for non-woven with the hot temperatures strong reason to improve or decline with hot temperature of air permeability.


Sign in / Sign up

Export Citation Format

Share Document