scholarly journals Cyber-SHIP: Developing Next Generation Maritime Cyber Research Capabilities

Author(s):  
K Tam ◽  
K Forshaw ◽  
KD Jones

As a growing global threat, cyber-attacks can cost millions of dollars or endanger national stability and human lives. While relatively well understood in most sectors, it is becoming clear that, although the maritime sector is becoming more digitally advanced (e.g., autonomy), it is not well protected against cyber or cyber-physical attacks and accidents. To help improve sector-wide safety and resiliency, the University of Plymouth (UoP) is creating a specialised maritime-cyber lab, which combines maritime technology and traditional cyber-security labs. This is in response to the lack of research and mitigation capabilities and will create a new resource capability for academia, government, and industry research into maritime cybersecurity risks and threats. These lab capabilities will also enhance existing maritime-cyber capabilities across the world, including risk assessment frameworks, cybersecurity ranges/labs, ship simulators, mariner training programmes, autonomous ships, etc. The goal of this paper is to explain the need for next generation maritime-cyber research capabilities, and demonstrate how something like the proposed Cyber-SHIP Lab (Hardware, Software, Information and Protections) will help industry, government, and academia understand and mitigate cyber threats in the maritime sector. The authors believe a next generation cyber-secure lab should host a range of real, non-simulated, maritime systems. With multiple configurations to mirror existing bridge system set-ups, the technology can be studied for individual system weakness as well as the system-of-systems vulnerabilities. Such as lab would support a range of research that cannot be achieved with simulators alone and help support the next generation of cyber-secure marine systems.

1997 ◽  
Vol 11 (3) ◽  
pp. 164-167 ◽  
Author(s):  
Michael Shattock

The author examines the case of the University of Warwick and its institutional strategies for partnership with a variety of external organizations. He argues that universities need to change their missions, and to show strong leadership and an enterpreneurial approach to adapt to their local, national and international markets. In particular, the paper looks at the considerable success of the Warwick Manufacturing Group in developing training programmes and research in partnership with industry.


Author(s):  
Arvind Kishanrao Rathod ◽  
Bhushan Shivaji Kulkarni

The main objective of cyber security is to prevent various types of attacks on individual user system or organizations system or network by implementing some preventive measures such as by enforcing security policies, providing security awareness among the peoples by organizing frequent trainings or workshop to avoid social engineering attacks. Also implementing some tools such as intrusion detection system, firewall, antiviruses in individual system on organizations network and avoid from data corruption or alteration attacks by attackers via internet or some other means.


2020 ◽  
Vol 2 (1) ◽  
pp. 82-86
Author(s):  
Adamu Garba ◽  
Maheyzah Binti Sirat ◽  
Siti Hajar ◽  
Ibrahim Bukar Dauda

This Case Study reports the preliminary results of a quantitative survey aimed to identify students' awareness and enthusiasm to learn cybersecurity in Nigerian Universities. The objective of the survey was to see how students in this developing country are aware of cyber-attacks and how they can mitigate the attacks and to find out if cybersecurity awareness program is part of the University program. The preliminary results indicated that the students claimed to have basic cybersecurity knowledge, but are not aware of how to protect their data. It also appears that most Universities do not have an active cybersecurity awareness program to improve students' knowledge on how to protect themselves from any threats. The surveyed students also show interest in learning more about cybersecurity.


2019 ◽  
Vol 9 (21) ◽  
pp. 4479 ◽  
Author(s):  
Tiago M. Fernández-Caramés ◽  
Paula Fraga-Lamas

Smart campuses and smart universities make use of IT infrastructure that is similar to the one required by smart cities, which take advantage of Internet of Things (IoT) and cloud computing solutions to monitor and actuate on the multiple systems of a university. As a consequence, smart campuses and universities need to provide connectivity to IoT nodes and gateways, and deploy architectures that allow for offering not only a good communications range through the latest wireless and wired technologies, but also reduced energy consumption to maximize IoT node battery life. In addition, such architectures have to consider the use of technologies like blockchain, which are able to deliver accountability, transparency, cyber-security and redundancy to the processes and data managed by a university. This article reviews the state of the start on the application of the latest key technologies for the development of smart campuses and universities. After defining the essential characteristics of a smart campus/university, the latest communications architectures and technologies are detailed and the most relevant smart campus deployments are analyzed. Moreover, the use of blockchain in higher education applications is studied. Therefore, this article provides useful guidelines to the university planners, IoT vendors and developers that will be responsible for creating the next generation of smart campuses and universities.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


Author(s):  
Richard J. Simonson ◽  
Joseph R. Keebler ◽  
Mathew Lessmiller ◽  
Tyson Richards ◽  
John C. Lee

As cyber-attacks and their subsequent responses have become more frequent and complex over the past decade, research into the performance and effectiveness of cybersecurity teams has gained an immense amount of traction. However, investigation of teamwork in this domain is lacking due to the exclusion of known team competencies and a lack of reliance on team science. This paper serves to provide insight into the benefit that can be gained from utilizing the extant teamwork literature to improve teams’ research and applications in the domain of cyber-security.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin Roedl ◽  
Dominik Jarczak ◽  
Andreas Drolz ◽  
Dominic Wichmann ◽  
Olaf Boenisch ◽  
...  

Abstract Background SARS-CoV-2 caused a pandemic and global threat for human health. Presence of liver injury was commonly reported in patients with coronavirus disease 2019 (COVID-19). However, reports on severe liver dysfunction (SLD) in critically ill with COVID-19 are lacking. We evaluated the occurrence, clinical characteristics and outcome of SLD in critically ill patients with COVID-19. Methods Clinical course and laboratory was analyzed from all patients with confirmed COVID-19 admitted to ICU of the university hospital. SLD was defined as: bilirubin ≥ 2 mg/dl or elevation of aminotransferase levels (> 20-fold ULN). Results 72 critically ill patients were identified, 22 (31%) patients developed SLD. Presenting characteristics including age, gender, comorbidities as well as clinical presentation regarding COVID-19 overlapped substantially in both groups. Patients with SLD had more severe respiratory failure (paO2/FiO2: 82 (58–114) vs. 117 (83–155); p < 0.05). Thus, required more frequently mechanical ventilation (95% vs. 64%; p < 0.01), rescue therapies (ECMO) (27% vs. 12%; p = 0.106), vasopressor (95% vs. 72%; p < 0.05) and renal replacement therapy (86% vs. 30%; p < 0.001). Severity of illness was significantly higher (SAPS II: 48 (39–52) vs. 40 (32–45); p < 0.01). Patients with SLD and without presented viremic during ICU stay in 68% and 34%, respectively (p = 0.002). Occurrence of SLD was independently associated with presence of viremia [OR 6.359; 95% CI 1.336–30.253; p < 0.05] and severity of illness (SAPS II) [OR 1.078; 95% CI 1.004–1.157; p < 0.05]. Mortality was high in patients with SLD compared to other patients (68% vs. 16%, p < 0.001). After adjustment for confounders, SLD was independently associated with mortality [HR3.347; 95% CI 1.401–7.999; p < 0.01]. Conclusion One-third of critically ill patients with COVID-19 suffer from SLD, which is associated with high mortality. Occurrence of viremia and severity of illness seem to contribute to occurrence of SLD and underline the multifactorial cause.


2020 ◽  
pp. 53-60
Author(s):  
Mohammed I. Alghamdi ◽  

Our economy, infrastructure and societies rely to a large extent on information technology and computer networks solutions. Increasing dependency on information technologies has also multiplied the potential hazards of cyber-attacks. The prime goal of this study is to critically examine how the sufficient knowledge of cyber security threats plays a vital role in detection of any intrusion in simple networks and preventing the attacks. The study has evaluated various literatures and peer reviewed articles to examine the findings obtained by consolidating the outcomes of different studies and present the final findings into a simplified solution.


Sign in / Sign up

Export Citation Format

Share Document