scholarly journals Measurement and Analysis of Natural Radioactive Elements in Salty Sediments from Central and Southern Iraq

2021 ◽  
pp. 3911-3920
Author(s):  
Mahdi Hadi Jasim ◽  
Afrah Essa Ramadan ◽  
Nessrian Ali Hussain

Purification of fifteen NaCl samples from natural and different area in the middle and south of Iraq are prepared  and studied the structural characteristics of samples by powder X-ray diffraction analysis at 𝛌=1.542Ã…. The present work considered the specific activities of naturally occurring radioactive materials in salt samples, which are measured and analyzed using high resolution HPGe system. Also, the radiological parameters have been considered in this work. The average specific concentration (in Bq.kg-1) of the salt samples is found 16.864.92 for 226Ra, 5.972.05 for 232Th and 9.852.8 for 40K, respectively, which are below the national levels, 40Bq.kg-1, 30Bq.kg-1 and 400Bq.kg-1, respectively (UNSCEAR, 2000). Similarly the absorb dose rates are in the range3.71 nGy.h-1 to 12.591nGy.h-1.The measured radiation hazard indices show that the concentrations of these radionuclides in all samples are within the allowable limits.

Author(s):  
C K Rotich ◽  
N O Hashim ◽  
M W Chege ◽  
C Nyambura

Abstract The activity concentration of soil samples of Bureti sub-county was measured using thallium-activated sodium iodide detector. To ascertain the level of radiation hazard to the public, gamma radiation dose rates were also estimated. The average activity concentration due to 40K, 226Ra and 232Th for soil samples are 1164 ± 70, 106 ± 8 and 79 ± 5 Bqkg−1, respectively. An average dose rate of 145 ± 10 nGyh−1 was recorded, which is about 2.5 times higher than the world average value of 60 nGyh−1(UNSCEAR). On the other hand, an average outdoor effective dose of 0.35 ± 0.02 mSvy−1 was measured, which is lower than the ICRP safety limit of 1 mSvy−1. This shows that the radiation hazards from naturally occurring terrestrial radionuclides in Bureti is low and therefore human radiation exposure is within the accepted limits.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1238
Author(s):  
Garven M. Huntley ◽  
Rudy L. Luck ◽  
Michael E. Mullins ◽  
Nick K. Newberry

Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Bimalendu Ray ◽  
Martin Schütz ◽  
Shuvam Mukherjee ◽  
Subrata Jana ◽  
Sayani Ray ◽  
...  

Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure–activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug–target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.


2020 ◽  
Vol 150 ◽  
pp. 03011
Author(s):  
Husam Al-Nussairi ◽  
Khalida Hassan

In this study, the marshlands in southern Iraq were investigated, focusing on the Hawizeh Marshlands and adjacent areas, by studying the scenario and quantities of water, in addition to the hydraulic and hydrochemical characteristics. To accomplish the objects of this study the researcher visited some fields, made interview with farmers, specialists, authorities and directorates related to this study. The results of this study indicate that there are a huge problem existed in the drainage systems with absence of natural outlets, the discharges of drainage water is towards Al- Hawizeh marsh which flow back its water into Tigris river through several canals, increasing salinity, scare of water, miss-use of land, lack of governments efforts to promote agricultural production leads to loss of soil productivity and land degradation.


2019 ◽  
Vol 23 (07n08) ◽  
pp. 797-812 ◽  
Author(s):  
Sonja Merkaš ◽  
Mladen Žinić ◽  
Régis Rein ◽  
Nathalie Solladié

During the past years, we focused on exerting control over the position and distance of porphyrins along our specifically designed oligonucleotidic scaffold. Indeed, in naturally occurring light-harvesting complexes, biopolymer scaffolds hold pigments at intermolecular distances that optimize photon capture, electronic coupling, and energy transfer. To this end, four uridine-porphyrin conjugates (a monomer, a dimer, a tetramer and an octamer) were subjected to a comprehensive conformational analysis by using NMR spectroscopy. The collected NOE NMR data highlighted characteristic and strong interactions indicating that the glycosidic angle between the ribose and uracil base is anti. In order to further investigate the conformation of this family of molecules, NMR experiments were carried out at variable temperatures. At low temperature, the signals of the porphyrinic protons decoalesce, showing two sets of [Formula: see text]-pyrrolic protons. Similar observations are made for signals corresponding to sugar moieties and especially the H1′ protons, indicating molecular motions within our porphyrin-uridin arrays. These results testify in favor of the existence of a dynamic process between C3′-endo and C2′-endo conformations.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 507 ◽  
Author(s):  
Maxim Rudmin ◽  
Elshan Abdullayev ◽  
Alexey Ruban ◽  
Ales Buyakov ◽  
Bulat Soktoev

We investigated the mechanochemical synthesis of complex slow release fertilizers (SRF) derived from glauconite. We studied the effectiveness of the mechanical intercalation of urea into glauconite using planetary and ring mills. The potassium-nitric complex SRFs were synthesized via a mechanochemical method mixing glauconite with urea in a 3:1 ratio. The obtained composites were analyzed using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence analysis, and infrared spectroscopy. The results show that as duration of mechanochemical activation increases, the mineralogical, chemical, and structural characteristics of composites change. Essential modifications associated with a decrease in absorbed urea and the formation of microcrystallites were observed when the planetary milling time increased from 5 to 10 min and the ring milling from 15 to 30 min. Complete intercalation of urea into glauconite was achieved by 20 min grinding in a planetary mill or 60 min in a ring mill. Urea intercalation in glauconite occurs much faster when using a planetary mill compared to a ring mill.


2014 ◽  
Vol 975 ◽  
pp. 207-212
Author(s):  
Dayse I. dos Santos ◽  
Olayr Modesto Jr. ◽  
Luis Vicente A. Scalvi ◽  
Americo S. Tabata

Metal oxide nanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first process produces directly a two-phase material, while the sol-gel powder never showed second phase below 600°C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.


2015 ◽  
Vol 70 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Gerhard Sohr ◽  
Nina Ciaghi ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractSingle crystals of the hydrous cadmium borate Cd6B22O39·H2O were obtained through a high-pressure/high-temperature experiment at 4.7 GPa and 1000 °C using a Walker-type multianvil apparatus. CdO and partially hydrolyzed B2O3 were used as starting materials. A single crystal X-ray diffraction study has revealed that the structure of Cd6B22O39·H2O is similar to that of the type M6B22O39·H2O (M=Fe, Co). Layers of corner-sharing BO4 groups are interconnected by BO3 groups to form channels containing the metal cations, which are six- and eight-fold coordinated by oxygen atoms. The compound crystallizes in the space group Pnma (no. 62) [R1=0.0379, wR2=0.0552 (all data)] with the unit cell dimensions a=1837.79(5), b=777.92(2), c=819.08(3) pm, and V=1171.00(6) Å3. The IR and Raman spectra reflect the structural characteristics of Cd6B22O39·H2O.


Sign in / Sign up

Export Citation Format

Share Document