scholarly journals Formulation and Evaluation of Copper Nanoparticles Loaded Microsponges

Author(s):  
S. Kothai ◽  
R. Umamaheswari

Microsponges become imperative in the field of targeted drug delivery and in other biomedical applications. There was a clamant need for designing microsponges incorporating with green synthesised metal nanoparticles rather than the chemical drug in order to reduce the side effects of the drug and thus increasing the effectiveness of nature of the whole material. It provokes us to design this novel approach of loading copper nanoparticles into the microsponges. Here in this work, microsponges based on ethyl cellulose and polyvinyl alcohol were synthesised by Quasi-Emulsion Solvent diffusion method in which copper nanoparticles procured from Hibiscus rosa-sinensis leaf extract was incorporated. The Loaded microsponges were characterised by High Resolution Scanning Electron Microscopy (HR-SEM) and Particle size distribution Analyzer (PSA). The Drug content and Entrapment Efficiency of the microsponges were found out. The antimicrobial and antioxidant activity of the loaded microsponges were evaluated.

Author(s):  
Seema Kohli ◽  
Abhisek Pal ◽  
Suchit Jain

Objective: The purpose of this research work was to develop and evaluate microspheres appropriate for controlled release of zidovudine (AZT).Methods: The AZT loaded polylactide-co-glycolide (PLGA) microspheres were prepared by W/O/O double emulsion solvent diffusion method. Compatibility of drug and polymer was studied by Fourier-transform infrared spectroscopy (FTIR). The influence of formulation factors (drug: polymer ratio, stirring speed, the concentration of surfactant) on particle size encapsulation efficiency and in vitro release characteristics of the microspheres was investigated. Release kinetics was studied and stability study was performed as per ICH guidelines.Results: Scanning electron microscopy (SEM) images show good reproducibility of microspheres from different batches. The average particle size was in the range of 216-306 μm. The drug-loaded microspheres showed 74.42±5.08% entrapment efficiency. The cumulative percentage released in phosphate Buffer solution (PBS) buffer was found to be 55.32±5.89 to 74.42±5.08 %. The highest regressions (0.981) were obtained for zero order kinetics followed by Higuchi (0.968) and first order (0.803).Conclusion: Microsphere prepared by double emulsion solvent diffusion method was investigated and the results revealed that 216-306 μm microsphere was successfully encapsulated in a polymer. FT-IR analysis, entrapment efficiency and SEM Studies revealed the good reproducibility from batch to batch. The microspheres were of an appropriate size and suitable for oral administration. Thus the current investigation show promising results of PLGA microspheres as a matrix for drug delivery and merit for In vivo studies for scale up the technology.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 656 ◽  
Author(s):  
Shi Su ◽  
Peter M. Kang

Background: Nanomedicine is a field of science that uses nanoscale materials for the diagnosis and treatment of human disease. It has emerged as an important aspect of the therapeutics, but at the same time, also raises concerns regarding the safety of the nanomaterials involved. Recent applications of functionalized biodegradable nanomaterials have significantly improved the safety profile of nanomedicine. Objective: Our goal is to evaluate different types of biodegradable nanomaterials that have been functionalized for their biomedical applications. Method: In this review, we used PubMed as our literature source and selected recently published studies on biodegradable nanomaterials and their applications in nanomedicine. Results: We found that biodegradable polymers are commonly functionalized for various purposes. Their property of being naturally degraded under biological conditions allows these biodegradable nanomaterials to be used for many biomedical purposes, including bio-imaging, targeted drug delivery, implantation and tissue engineering. The degradability of these nanoparticles can be utilized to control cargo release, by allowing efficient degradation of the nanomaterials at the target site while maintaining nanoparticle integrity at off-target sites. Conclusion: While each biodegradable nanomaterial has its advantages and disadvantages, with careful design and functionalization, biodegradable nanoparticles hold great future in nanomedicine.


Author(s):  
Kanchan Sonker ◽  
Randhir Gupta ◽  
Jovita Kanoujia ◽  
Viney Chawla ◽  
Manisha Pandey ◽  
...  

Microspheres of ethyl cellulose containing prednisolone sodium phosphate were prepared by double emulsion solvent diffusion method. A statistical design was used to study and optimize the variables that affect the preparation of microspheres. The experimental results showed that the drug: polymer ratio, stirring speed, concentration of surfactant, and volume of processing media played an important role in the formulation of microspheres. The prepared microspheres were characterized on the basis of particle size, scanning electron microscopy, entrapment efficiency and <italic>in vitro</italic> release. Taguchi experimental design helped to reduce the number of experiments. Optimized formulation exhibited Higuchi square root kinetics displaying diffusion from the microspheres as the main mechanism for drug release.


NANO ◽  
2010 ◽  
Vol 05 (05) ◽  
pp. 245-270 ◽  
Author(s):  
AIGUO WU ◽  
PING OU ◽  
LEYONG ZENG

In this review, the applications of magnetic nanoparticles in biomedicine are summarized and introduced in three parts. (1) A short description of magnetic nanoparticles is explained. (2) Applications of magnetic nanoparticles in biomedicine are summarized. In biology, new progress of the magnetic separation techniques based on magnetic nanoparticles is discussed. In medicine, the magnetic nanoparticles as therapeutic agents (particularly as a hyperthermia agent, a targeted drug delivery carrier, and a magnetofection agent) as well as contrast agents in magnetic resonance imaging (MRI) are explained in detail. (3) A discussion and remarking conclusion of magnetic nanoparticles in biomedical applications are described. Finally, a perspective of the magnetic nanoparticles in biomedicine in future is also described.


Author(s):  
Akash Das ◽  
Ajay D. Thakur ◽  
Atul Thakur

Biomedical applications like cell manipulation and targeted drug delivery require automated micro-manipulation of biological material. Magnetic micro-manipulation has high actuation speed and minimal adverse effect on cell viability. Ferromagnetic particles, actuated via magnetic field, are used to push a target cell. The process is however cumbersome therefore require automation. This paper reports design, fabrication, and control of an image guided automated non-prehensile magnetic micromanipulation system. The developed system consists of ferromagnetic microspheres (henceforth referred to as microbots) which are actuated via independently controlling currents in four solenoids placed in a quadrupole configuration. We use image based localization for determining the microbot and target cell locations. We developed feedback planner which invokes either of the two maneuvers, namely, push or align to move microbot in order to push the cell towards the goal location. Instead of customize microtools we use simple spherical shaped microbots for pushing target cells.


2018 ◽  
Vol 28 (4) ◽  
pp. 242-251 ◽  
Author(s):  
Louis Chonco ◽  
Gerónimo Fernández ◽  
Rahul Kalhapure ◽  
María J. Hernáiz ◽  
Cecilia García-Oliva ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
ALAA KHATTAB ◽  
Abdulhakim Nattouf

AbstractThe aim of the present study was to formulate clindamycin (CLN) as a microsponge based gel to release the drug in a controlled manner and reduce the side effects in the treatment of acne. Since this method requires poor water solubility of the drug to be loaded in particles, therefore, conversion of the hydrochloride salt to free base was done. By using an emulsion solvent diffusion method, we made six different formulations of microsponges containing CLN-free base by changing the proportions of polymer, emulsifier and the pH of the external phase. These formulations were studied for physical characterization and for drug- polymer interactions. The physical characterization showed that microsponge formulations coded by C5, C6 resulted in a better loading efficiency and production yield and their particle size was less than 30 µm. Scanning electron microscopy images showed the microsponges porous and spherical. C5, C6 microsponge formulation was prepared as gel in Carbopol and in vitro evaluated. The microsponge formulation gel C8 was found to be optimized. C8 released 90.38% of drug over 12 h and showed viscosity 20,157 ± 38 cp, pH of 6.3 ± 0.09 and drug content of 99.64 ± 0.04%. Fourier transform infrared spectroscopy and differential scanning calorimetry confirmed no significant interactions between excipients and drug.


2021 ◽  
Vol 8 (10) ◽  
pp. 134
Author(s):  
Abdulkader Baki ◽  
Frank Wiekhorst ◽  
Regina Bleul

Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.


Sign in / Sign up

Export Citation Format

Share Document