scholarly journals Analisis Profil Bawah Permukaan Pantai Lumpue Kota Parepare

2019 ◽  
Vol 23 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Haerany Sirajuddin ◽  
Sri Maulidani

Lumpue Beach Subsurface Profile Analysis of Parepare City. This study aims to analyze the subsurface profile of Lumpue beach which is directly contaminated with activities around the coast. In this study, the Wenner Schlumberger method was used in the Lumpue beach area, Perepare City, South Sulawesi Province. The tool used is a multichannel geoelectric with a maximum length of 480 m in each trajectory, in this study there are 3 trajectories in which the first trajectory is 480 m with depth as deep as 91.2 m and the resistivity results obtained range from 0.207 -> 97.8 Ωm which identified as alluvium containing clay soil, silt soil, sandstone and pyroclastic rock bolder that has been contaminated by sea water. At lane 2 intersects the middle lane 1 with a length of 240 m and identified depths of 91.2 m, the recorded resistivity results range between 5.52 -> 623 Ωm where the resistivity value identifies the alluvium material, which contains clay, silt soil , sandstone that has been contaminated with water and the presence of some pyroclastic rock inserts that are contaminated by water. Whereas lane 3 intersects lane 1 at the end with a lenght of 240m and a depth of 91.2 m, while the recorded resistivity results range from 0.354 - 11776 Ωm where from the recorded resistivity results the material contained in lane 3 is the inserted alluvium material. by pyroclastic rocks. The area covered by the track is an area with alluvium material which is an alluvial unit and most of it is contaminated by water, either by sea water or fresh groundwater and is inserted by pyroclastic rocks.

2018 ◽  
Vol 23 (2) ◽  
pp. 235-249
Author(s):  
Mrinal Kanti Layek ◽  
Palash Debnath ◽  
Probal Sengupta ◽  
Abhijit Mukherjee

A combination of geophysical study including ground penetrating radar (GPR) and vertical electrical sounding (VES) was done to identify different shallow-subsurface depositional features in an intertidal coast of the eastern parts of India, adjoining the Bay of Bengal (BoB) (Chandipur, Odisha state). The study was aimed to understand the variation of sedimentary depositional sequences, prograding to the ocean from land, as well as towards the confluence of a river channel with the BoB. Six VES points and 85 GPR traverses were taken in the intertidal flat. The data were calibrated with sedimentary sequences retrieved from simultaneously drilled boreholes in four locations. Resistivity data clearly demonstrate the subsurface sediment layer boundaries with water saturation variability, up to 156 m below ground surface (bgs). The data suggest thickening of brackish water saturated clay layers towards the southwestern part. GPR data were capable of resolving the geometry of intertidal dunes, buried palaeo-channels, erosional surface, water table, eolian deposit of sand, and washover delta depositional features which are all present in this study area. Several erosional surfaces, related to sedimentary processes, e.g., delta overwash processes, were clearly demarcated. The study also successfully identified and visualized the saline-fresh groundwater interfaces and submarine ground water discharge (SGD) zones. Consequently, based on these data, a conceptual model of the depositional and erosional history of the sedimentation of the area, as well as the coastal hydrogeological disposition, was conceived.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 150
Author(s):  
T Subramani ◽  
P Krishnan

Fresh groundwater quality and accessibility in coastal zones is influenced via seawater interruption into coastal aquifers, and coastal water quality and biological community status might be altogether influenced by groundwater pollutants that are transported into coastal waters by submarine groundwater discharge (SGD). SGD and its pertinent evaluation as one associating part  among the different principle local pathways of freshwater and tracer/poison contributions from land to sea and the coordinated framework working of both and as primary segments of the same coastal groundwater framework. An elective technique might be to control seawater interruption through fake groundwater revive, for example by adequately treated wastewater, which may impressively decrease long haul patterns of saltiness increment in pumped groundwater, notwithstanding for little simulated energize rates contrasted with pumping rates. Both the outside sources and the interior wellsprings of water seepage might be distinguished via doing infrared thermo-realistic assessments subsequent to directing water snugness tests, flooding tests or pressure driven tests as suitable. A contextual investigation was led to discover the examinations on groundwater issues in a region subjected to sea water ingression and seepage into groundwater in Karaikal   


2019 ◽  
Author(s):  
Joeri van Engelen ◽  
Jarno Verkaik ◽  
Jude King ◽  
Eman R. Nofal ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. The Nile Delta is an important agricultural area with a fast-growing population. Though traditionally irrigated with surface water, the delta increasingly relies on groundwater. However, saline groundwater extends far land inward, rendering groundwater close to the coastal zone useless for consumption or agriculture. To aid groundwater management decisions, hydrogeologists reconstructed this saline and brackish groundwater zone using variable-density groundwater models with very large dispersivities. However, this approach cannot explain the observed freshening of this zone as observed by hydrogeochemists, who hypothesize that the coastal saline zone is the effect of the Holocene transgression. Here, we investigated physical plausibility of this hypothesis by conducting a palaeo-reconstruction of groundwater salinity for the last 32 ka with a complex 3D variable-density groundwater flow model, using state-of-the-art model code that allows for parallel computation. Several scenarios with different lithologies and hypersaline groundwater provenances were simulated, of which five were selected that showed the best match with the observations. Amongst these selections, total fresh water volumes varied strongly, ranging from 1526 to 2659 km3, mainly due to uncertainties in the lithology offshore and at larger depths. This range is smaller (1511–1989 km3) when we consider the volumes of onshore fresh groundwater within 300 m depth. Regardless of the variance, in all cases the total volume of hypersaline groundwater exceeded that of sea water. We also show that during the last 32 ka, the total fresh groundwater volumes significantly declined, with a factor ranging from 1.9 to 5.4, due to the rising sea-level. Compared to a steady-state solution with present-day boundary conditions, the palaeo-reconstruction improved our validation for the saline zone (5 g/L–35 g/L TDS). Also, under highly permeable conditions the marine transgression simulated with the palaeo-reconstruction led to a steeper fresh-salt interface compared to its steady-state equivalent, while low permeable clay layers allowed for the preservation of volumes of fresh groundwater. This shows that long-term transient simulations are needed when estimating present-day fresh-salt groundwater distribution in large deltas. The insights of this study are also applicable to other major deltaic areas, given the wide-range of lithological model scenarios used in this study and since many deltas also experienced a Holocene marine transgression.


2021 ◽  
Author(s):  
Maria Elisa Travaglino ◽  
Pietro Teatini

<p>Saltwater intrusion in coastal aquifers is one of the most challenging and worldwide environmental problems, severely affected by human activities and climate change. It represents a threat to the quality and sustainability of fresh groundwater resources in coastal aquifers. Saline water is the most common pollutant in fresh groundwater which can also compromise the agriculture and the economy of the affected regions. Therefore, it is necessary to develop engineering solutions to restore groundwater quality or at least to prevent further degradation of its quality.</p><p>For this purpose, the goal of the Interreg Italy – Croatia MoST (MOnitoring Sea-water intrusion in coastal aquifers and Testing pilot projects for its mitigation) project is to test possible solutions (such as underground barriers, cut-off walls, recharge wells and recharge drains) against saltwater intrusion properly supported by field characterization, laboratory experiments, monitoring of hydrological parameters, and numerical models.</p><p>This works shows the preliminary results of an ongoing modelling study carried out for a coastal farmland at Ca’ Pasqua, in the southern part of the Venice lagoon, in Italy. A three-dimensional finite-element density-dependent groundwater flow and transport model is developed to simulate the dynamics of saltwater intrusion in this lowlying area. The model is used to assess the potential effects of a recharge drain recently established at 1.5 m depth along a sandy paleochannel crossing the organic-silty area. The goal of the intervention is to mitigate the soil and groundwater salinization by spreading freshwater supplied by a nearby canal. The beneficial consequences of the recharge drain should be enhanced by the higher permeability of the paleochannel.</p>


2021 ◽  
Author(s):  
Joeri van Engelen ◽  
Gualbert Oude Essink ◽  
Marc Bierkens

<p>Increasing population, growth of cities and intensifying irrigated agriculture in the world’s deltas promote the demand for fresh water resources, accelerating groundwater extraction. This, in turn, leads to sea water intrusion and salt water upconing, which threaten near-future water and food security. Proper water management in deltas requires precise knowledge about the current status of the deltas’ fresh groundwater resources, in the form of a groundwater salinity distribution. However, this knowledge is scarcely present, especially at larger depths. In this research, we applied three-dimensional variable-density groundwater model simulations over the last 125 ka to estimate present-day fresh groundwater volumes for several major deltas around the world. We also compared these to current extraction rates and estimated the time until in-situ fresh groundwater resources are completely exhausted (ignoring local-scale problems), partly leading to groundwater level decline and mostly replacement with river water or saline groundwater. In this presentation we will share our findings, for example which deltas’ groundwater reserves presumably are under stress.</p>


Author(s):  
Viet Lam Hoang Quoc ◽  
A. B. Lisenkov ◽  
V. J. Lavrushin

The origin and formation of the groundwater in the Mekong Delta are the complex problem, which has not one solution nowadays. So the exploitation scheme still has many limitations. In the aquifers of the Mekong Delta there are both fresh water and mineralized water, which are very complex and heterogeneous in the distribution. The mineralized water has been considered to have sedimentagenous genesis (buried seawater), and freshwater has been believed to originate from infiltration of meteoric water. Studying of the stable isotopes of oxygen and hydrogen of the groundwater in the Mekong Delta has shown that the groundwater originates mainly from the infiltration of the meteoric water. In addition, a significant factor in the formation of groundwater in the Middle, Lower Pliocene and Miocene aquifer is the mixing of the meteoric and sea waters. Increasing in values of stable isotopes with growing depth of groundwater is related with that the recharging areas of Paleogene (deep) aquifers are distributed higher by absolute depths and farther from the coastline than recharging areas of Quaternary (shallow) aquifers. The results of the research can be used to optimize the scheme for the exploitation of the fresh groundwater, limiting the intrusion of sea water in the exploited groundwater in the Mekong Delta.


2013 ◽  
Vol 5 (3) ◽  
pp. 387
Author(s):  
Damardjati Kun Marjanto, Syaifuddin

AbstrakMasyarakat Bajo di Pulau Bungin, Kabupaten Sumbawa, Provinsi Nusa Tenggara Barat, merupakan masyarakat laut yang berasal dari Sulawesi Selatan. Mereka bermigrasi sejak ratusan tahun yang lalu dan akhirnya menetap di kawasan pantai Pulau Sumbawa. Pada awalnya mereka tidak mendiami daratan seperti sekarang ini, melainkan hidup di laut sekitar pantai dengan sistem perumahan di atas air laut. Lama-kelamaan sebagai akibat adanya pertumbuhan penduduk, mereka mulai mengusahakan daratan dengan cara menimbun air laut dengan batu maupun karang yang sudah mati. Sebagai akibat dari pengaruh lingkungan, kebudayaan suku Bajo di Pulau Bungin saat ini mempunyai ciri khas kebudayaan dua lingkungan yaitu lingkungan laut dan daratan. Lingkungan yang dihadapi oleh masyarakat Bajo tersebut menghasilkan potensi, di mana potensi dimaknai sebagai kemampuan yang memungkinkan untuk dikembangkan. Potensi laut meliputi wilayah laut dan pantai yang kaya dengan sumberdaya alam, sedangkan wilayah daratan menjadi penting sebagai tempat tinggal dan wahana interaksi masyarakat. Potensi budaya di laut dan daratan yang meliputi sistem mata pencaharian tradisional, kesenian tradisional dan pengobatan tradisional tersebut apabila dapat dikelola dengan sebaik-baiknya, akan menjadi kekuatan bagi kemajuan masyarakat Bajo baik dalam bidang sosial maupun ekonomi. Dengan demikian penelitian ini penting dilakukan salah satu alasannya untuk menemukenali potensi budaya yang ada. Penelitian dilakukan dengan pendekatan kualitatif, adapun pengumpulan datanya dengan pengamatan dan wawancara. AbstractThe Bajo people in Bungin Island, Sumbawa regency, West Nusa Tenggara Province, is a marine society from South Sulawesi. They migrated to the island hundreds of years ago and eventually settled in the coastal region of Sumbawa Island. At first they did not inhabit the land as it is today; instead they lived at the sea around the coast with on-the-sea-water housing system. Due to population growth over time, they began to seek more land by piling up the sea with rocks and dead coral. As a result of environmental influences, the Bajo of Bungin Island has currently two environmental cultural characteristics, both marine and terrestrial. These are potential environments to be developed. The sea around them is very rich in natural resources while the mainland is important as a place to live in as well as for community interaction. The cultural potential they have are, among others, traditional subsistence, traditional art, and traditionalmedicine. All of these have to be well-managed so that they can support the Baja people either socially and economically. This research conducted with a qualitative approach, the data obtained through observations and interviews.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Wahyu Widayat

Takabonerate  is one of the 23 regencies in South Sulawesi where it is locates at the southern parth of South Sulawesi Province and it is surrounded by flores sea. As maritime regency, its mainland is 1,188.28 km2 (5.23%) and the sea is approximately 21,138.41 km2 (94.68%). It has 126 islands wich consist of small and big islands.  Tarupa village’s   a subdistrict located in a tidy and peat area. The community living in tarupa use surface water of river as the main clean water resource. The surface water is  influenced by the tide of sea water. The surface water taste is very salty (TDS12000ppm). The use of rain water as the second alternative is very limited, i.e it is only in rainy season. To deal with the chronic problem, such as the lack of clean water supply, it needs an appropriate water treatment technology. The suitable water treatment system is a combination of conventional and advanced technology. Desalination, such as Reverse Osmosis must be involved to reduce salinity of the raw water. A complete process includes the pretreatment and advance treatment. The pretreatment are oxidation and some common filtrations. The advance treatment is a molecular filtration using a membran which the principal is reverse osmosis pressure. If the pilot water treatment plant is avalaible in Tarupa in Takabonerate, the clean water supply will not be a serious problem. Generally, it can also play an important role to increase the social level of community in South Sulawesi.. Kata Kunci : Teknologi, pengolahan, air asin, reverse osmosis, air minum.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Thilagavathi Rajendiran ◽  
Chidambaram Sabarathinam ◽  
Thivya Chandrasekar ◽  
Banajarani Panda ◽  
Mahalakshmi Mathivanan ◽  
...  

AbstractIn recent years, the extraction of groundwater (GW) in coastal aquifers has rendered the fragile aquifers more saline due to the sea water intrusion. Groundwater from the coastal aquifers of the Pudhucherry region were sampled to study the process of salinization. An integrated approach was adopted to identify the salinization process, by coordinating the results of borehole geophysics, rainfall pattern, water level variation, hydrochemical characters and multivariate statistical analysis. A total of 136 groundwater samples were collected during two different seasons, southwest monsoon (SWM) and northeast monsoon (NEM). The major cations and anions were analyzed adopting standard procedures. Resistivity and litholog indicate that the southeastern (SE) part of the study region has lower resistivity than in north. Based on electrical conductivity (EC) and total dissolved solids (TDS) values, most of the samples are potable, except for few samples from southeastern region. The study results indicated that higher values of Na, EC, K, SO4, Mg and Cl were observed during NEM, indicating leaching of salt into the aquifer and ion exchange process. The predominant hydrochemical facies of groundwater was Na-Cl and Ca–Mg–Cl type reflecting the saline water and the mixing process of saltwater and fresh groundwater, respectively. Though more number of samples with higher EC was noted in NEM, the results of PCA and correlation analysis indicate the predominance of leaching of salts and intense agricultural activities. The process of sea water intrusion was observed to be dominant during SWM.


2017 ◽  
Vol 16 (2) ◽  
pp. 51
Author(s):  
Anwar Mallongi ◽  
Ruslan La Ane ◽  
Agus Bintara Birawida

Background: Lead can be a poison to the environment which may affects all body systems. Lead can also affect human health especially children, lead potentially lowering level of intelligence, growth, loss, causing anemia, and disorder among children as lead is neurotoxin and accumulative. In addition lead can cause a decrease in the ability of the brain, whereas in adults may cause interference of high blood pressure and other tissue toxicity. Any increase in the levels of lead in the blood of 10 ug / dl led to a decrease in IQ of 2.5 points or 0.975 IQ. The research aims to produce a special model of health risk among elementary school children due to lead exposure in the coastal city of Makassar.Methods: This study investigate the distribution of toxic lead in Makassar coastal area namely; sea water, sediments, shells  and crab. Then investigate lead toxins around the school such as lead in soil, dust, paint, snacks and air. After create distribution maps lead risks we create analysis of environmental health risks for children.Results: Result revealed that the analysis of spatial distribution of Lead in the sediment shows that the high distribution was in station 3 in Mariso districts then coastal Tallo area and the lowest was in Tamalate District. While the analysis of the spatial Pb distribution in mussels seen that the highest distribution Pb was in  station 4 of districts Mariso then coastal waters Tallo area and the lowest was in Tamalate District 5.00 to 7.20 mg / g.Conclusion: In conclusion, it revealed the concentration of Lead at all stations of those four districts have exceeded the level of allowed standard and may potentially lead to a hazard both to environment and human being who are living in the surround area.  


Sign in / Sign up

Export Citation Format

Share Document