scholarly journals Preliminary Investigation of CO2 Sequestration by Chlorella sorokiniana TH01 in Single and Sequential Photobioreactors

Author(s):  
Do Thi Cam Van ◽  
Tran Dang Thuan ◽  
Nguyen Quang Tung

Increasing accumulation of CO2 in the atmosphere mainly caused by fossil fuels combustion of human activities have resulted in adverse global warming. Therefore, searching for treatment methods for effective utilization of CO2 have received a great attention worldwide. Among various methods (e.g., adsorption, absorption, storage, membrane technologies, etc.) have been developed and applied, the sequestration of CO2 using microalgae has recently emerged as an alternatively sustainable approach. In this work, a green microalgal strain Chlorella sorokiniana TH01 was used to investigate its capability in sequestration of CO2 in laboratory scale. Results indicated that the C. sorokiniana TH01 grew well under a wide range of CO2 concentration from 0.04% to 20% with maximum growth was achieved under CO2 aeration of 15%. In a single photobioreactor (PBR) with 10 min empty bed residence time (EBRT), the C. sorokiniana TH01 only achieved CO2 fixation efficiency of 6.33% under continuous aeration of 15% CO2. Increasing number of PBRs to 15 and connected in a sequence enhanced mean CO2 fixation efficiency up to 82.64%. Moreover, the CO2 fixation efficiency was stable in the range of 78.67 to 91.34% in 10 following days of the cultivation. Removal efficiency of NO3--N and PO43--P reached 82.54 – 90.25% and 95.33 – 98.02%, respectively. Our trial data demonstrated that the C. sorokiniana TH01 strain is a promising microalgal for further research in simultaneous CO2 mitigation via CO2 sequestration from flue gas as well as nutrients recycling from wastewaters. Keywords: Carbon dioxide, C. sorokiniana TH01, Photobioreactors, Sequestration, Nutrients removal.

2018 ◽  
Vol 42 ◽  
pp. 01004
Author(s):  
Andang W. Harto ◽  
Mella Soelanda

The rising of atmospheric CO2 concentration is the major source to global warming system. Many methods have been proposed to mitigate global warming, such as carbon penalty, carbon trading, CO2 sequestration, etc. However these proposed methods are usually uneconomical, i.e., these methods do not produce economic valuable substances. This paper will propose a method to absorb atmospheric CO2 to produce economic valuable substances such as methanol, dimethyl ether, ethylene, several hydrocarbon substances and derivatives and several graphite substances. This paper is focused on methanol production using atmospheric CO2 capture. The overall process is endothermic. Thus a sufficient energy source is needed. To avoid more CO2 emission, the energy source must not use conventional fuels. To assure the continuity of energy deliberation, nuclear energy will be used as the energy source of the process. In this paper, the Passive Compact Molten Salt Reactor (PCMSR) will be used as the energy source. The 460 MWth PCMSR is coupled with atmospheric CO2 capture, desalination, hydrogen production and methanol production facilities. The capturing CO2 capacity is 7.2 ton/h of atmospheric CO2. The valuable outputs of this system are 3.34 ton/h of H2, 34.56 ton/h of O2, 5.24 ton/h of methanol and 86.74 MWe of excess electricity.


2013 ◽  
Vol 10 (3) ◽  
pp. 1391-1406 ◽  
Author(s):  
B. Niehoff ◽  
T. Schmithüsen ◽  
N. Knüppel ◽  
M. Daase ◽  
J. Czerny ◽  
...  

Abstract. The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated CO2 are still lacking. In order to test whether abundance and taxonomic composition change with pCO2, we have sampled nine mesocosms, which were deployed in Kongsfjorden, an Arctic fjord at Svalbard, and were adjusted to eight CO2 concentrations, initially ranging from 185 μatm to 1420 μatm. Vertical net hauls were taken weekly over about one month with an Apstein net (55 μm mesh size) in all mesocosms and the surrounding fjord. In addition, sediment trap samples, taken every second day in the mesocosms, were analysed to account for losses due to vertical migration and mortality. The taxonomic analysis revealed that meroplanktonic larvae (Cirripedia, Polychaeta, Bivalvia, Gastropoda, and Decapoda) dominated in the mesocosms while copepods (Calanus spp., Oithona similis, Acartia longiremis and Microsetella norvegica) were found in lower abundances. In the fjord copepods prevailed for most of our study. With time, abundance and taxonomic composition developed similarly in all mesocosms and the pCO2 had no significant effect on the overall community structure. Also, we did not find significant relationships between the pCO2 level and the abundance of single taxa. Changes in heterogeneous communities are, however, difficult to detect, and the exposure to elevated pCO2 was relatively short. We therefore suggest that future mesocosm experiments should be run for longer periods.


2019 ◽  
Vol 46 (1) ◽  
pp. 1 ◽  
Author(s):  
Hiroyuki Shimono ◽  
Graham Farquhar ◽  
Matthew Brookhouse ◽  
Florian A. Busch ◽  
Anthony O'Grady ◽  
...  

Elevated atmospheric CO2 concentration (e[CO2]) can stimulate the photosynthesis and productivity of C3 species including food and forest crops. Intraspecific variation in responsiveness to e[CO2] can be exploited to increase productivity under e[CO2]. However, active selection of genotypes to increase productivity under e[CO2] is rarely performed across a wide range of germplasm, because of constraints of space and the cost of CO2 fumigation facilities. If we are to capitalise on recent advances in whole genome sequencing, approaches are required to help overcome these issues of space and cost. Here, we discuss the advantage of applying prescreening as a tool in large genome×e[CO2] experiments, where a surrogate for e[CO2] was used to select cultivars for more detailed analysis under e[CO2] conditions. We discuss why phenotypic prescreening in population-wide screening for e[CO2] responsiveness is necessary, what approaches could be used for prescreening for e[CO2] responsiveness, and how the data can be used to improve genetic selection of high-performing cultivars. We do this within the framework of understanding the strengths and limitations of genotype–phenotype mapping.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 463 ◽  
Author(s):  
Ali Nawaz Kumbhar ◽  
Meilin He ◽  
Abdul Razzaque Rajper ◽  
Khalil Ahmed Memon ◽  
Muhammad Rizwan ◽  
...  

The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells−1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells−1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.


Author(s):  
Jeffrey Amelse

Mitigation of global warming requires an understanding of where energy is produced and consumed, the magnitude of carbon dioxide generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between and need for both CO2 and biomass CARBON sequestration. Short reviews are provided for prior technologies proposed for reducing CO2 emissions from fossil fuels or substituting renewable energy, focusing on their limitations. None offer a complete solution. Of these, CO2 sequestration is poised to have the largest impact. We know how to do it. It will just cost money, and scale-up is a huge challenge. Few projects have been brought forward to semi-commercial scale. Transportation accounts for only about 30% of U.S. overall energy demand. Biofuels penetration remains small, and thus, they contribute a trivial amount of overall CO2 reduction, even though 40% of U.S. corn and 30% of soybeans are devoted to their production. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient, and an inefficient use of biomass carbon. Both biofuels and CO2 sequestration reduce FUTURE CO2 emissions from continued use of fossil fuels. They will not remove CO2 ALREADY in the atmosphere. The only way to do that is to break the Carbon Cycle by growing biomass from atmospheric CO2 and sequestering biomass CARBON. Theoretically, sequestration of only a fraction of the world’s tree leaves, which are renewed every year, can get the world to Net Zero CO2 without disturbing the underlying forests.


2020 ◽  
Author(s):  
Ana Xiao Outomuro Somozas ◽  
Rudi P. Nielsen ◽  
Marco Maschietti ◽  
Anders Andreasen

Three flare systems are modeled and total plant depressurization is investigated using dynamic simulations in order to access the debottlenecking potential. Usually steady-state simulation of the flare network is used for sizing and rating of the flare system. By using dynamic simulations effects from line packing in the flare system can be studied. The results show that peak flow during a dynamic simulations is significantly lower than the peak flow used in a steady-state case. <br>The three systems investigated span a wide range in flare system size, both in terms of number of process segments disposing into the flare network, in terms of peak design rate and the flare network pipe dimensions and total hold-up volume. Generally, it is observed that the larger the flare system, the larger debottlenecking potential.


Author(s):  
Martin Ariel Kazimierski

El actual sistema energético mundial se caracteriza por una alta dependencia de los combustibles fósiles, un paradigma que empieza a encontrar dificultades en tanto se agotan las reservas existentes y aumentan los costos ecológicos. Así, la incorporación de energías renovables, su generación en forma distribuida y el crecimiento del parque automotor eléctrico, se presentan como la triada más prometedora en la conformación de un nuevo paradigma más eficiente y sustentable. Este artículo se centra en la importancia que adquieren los acumuladores energéticos ante este panorama, principalmente por su rol en la estabilización de las redes y posibilitar el autoconsumo y la propulsión eléctrica. Identifica en las baterías de ion-litio un abanico de posibilidades para Sudamérica, que posee las reservas más importantes de litio en el mundo, incorporando la idea del desarrollo dentro del nuevo patrón energético y en un mercado actual y potencial de grandes dimensiones. Abstract The current global energy system is characterized by a high dependence on fossil fuels, a paradigm that begins to encounter difficulties as existing reserves are depleted and ecological costs increase. Thus, the incorporation of renewable energies, their generation in a distributed form and the growth of the electric motor park, are presented as the most promising triad in the conformation of a new, more efficient and sustainable paradigm. This article focuses on the importance that energy accumulators acquire in this scenario, mainly due to their role in stabilizing networks and enabling self-consumption and electric propulsion. It identifies lithium-ion batteries with a wide range of possibilities for South America, which has the most important reserves of lithium in the world, incorporating the idea of ​​development within the new energy pattern and in a current and potential market of large dimensions.


2019 ◽  
Vol 8 (4) ◽  
pp. 3054-3058

The rise of atmospheric carbon dioxide (CO2 )concentration as well as depletion of fossil fuel reserves calls for the development of clean and ecofriendly alternative fuel source. Recently, lipid rich microalgal biomass is being extensively studied for generation of biodiesel however, the expensesincurred on production of microalgal biomassis a significant hurdle. Almost 80 % of the production costis generated from the cultivation medium which majorly comprise of carbon, nitrogen and phosphate. If the microalgal cultivation could be linked to a CO2 capturing unit than the cost of production could be reduced to a large extent. CO2 absorption by means of aqueous amine solvents is known to be a mature technology and could be integrated with microalgal cultivation unit for efficient utilization of the captured CO2 . In this present research work, blended solution of piperazine (PZ) and2-amino2-methyl-1-propanol (AMP) (5/25 wt. %) was used to capture CO2 and then the captured CO2 was utilized as an inorganic carbon stream for growing Chlorella sorokiniana BTA 9031 for biodiesel production. The CO2rate absorption was governed by series of process variablesviz.solvent flow rate ranges (1.5 to 3) ×10⁻4 m 3 min-1 , absorption temperature (298 to 313) K,concentration of CO2 (10 to 15) kPa and gas flow rate(5 to 8) ×10⁻3 m 3 min-1 . The detected final biomass strengthofChlorella sorokiniana BTA 9031 was0.955g L-1 . The fatty acid methyl esters (FAME) determinedsubsequentlyacid transesterification was observed to contain fatty acids suitable for biodiesel production.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Arash Esmaeili ◽  
◽  
Zhibang Liu ◽  
Yang Xiang ◽  
Jimmy Yun ◽  
...  

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E- NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.


Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 38 ◽  
Author(s):  
Marcella Mesquita ◽  
Miquel Lürling ◽  
Fabiane Dorr ◽  
Ernani Pinto ◽  
Marcelo Marinho

Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium that can tolerate a wide range of light and temperature. Due to climatic changes, the interaction between light and temperature is studied in aquatic systems, but no study has addressed the effect of both variables on the saxitoxins production. This study evaluated the combined effect of light and temperature on saxitoxins production and cellular quota in C. raciborskii. Experiments were performed with three C. raciborskii strains in batch cultures under six light intensities (10, 40, 60, 100, 150, and 500 μmol of photons m−2 s−1) and four temperatures (15, 20, 25, and 30 °C). The growth of C. raciborskii strains was limited at lower temperatures and the maximum growth rates were obtained under higher light combined with temperatures equal or above 20 °C, depending on the strain. In general, growth was highest at 30 °C at the lower light intensities and equally high at 25 °C and 30 °C under higher light. Highest saxitoxins concentration and cell-quota occurred at 25 °C under high light intensities, but were much lower at 30 °C. Hence, increased temperatures combined with sufficient light will lead to higher C. raciborskii biomass, but blooms could become less toxic in tropical regions.


Sign in / Sign up

Export Citation Format

Share Document