scholarly journals Production of Starch-Based Bioplastic from Durio zibethinus Murr Seed Using Glycerol as Plasticizer

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Nanda Raudhatil Jannah ◽  
Novesar Jamarun ◽  
Yulia Eka Putri

Bioplastics are bio-based plastics from natural resources, made to replace conventional plastics. The utilization of biopolymers in bioplastics provide a faster degradation compared to petroleum-based plastics. Starch-based bioplastic from mixing Durio zibethinus Murr starch and glycerol as plasticizer have been conducted. In this research, the concentration of glycerol has been varied to study the effect on starch-based bioplastics mechanical properties. The tensile strength for Durio zibethinus Murr starch-based bioplastic with 20% glycerol was 50.28 MPa with 13.3% elongation. The functional group found on the Fourier transform infrared spectroscopy (FTIR) spectra indicated the presence of O-H stretch, C-H stretch, C=O stretch, and C-O stretch which stated the formation of bioplastic. The image results gained from scanning electron microscope (SEM) showed that the morphology surface of bioplastic was less homogenous and rough. The soil burial test for biodegradability showed Durio zibethinus Murr starch-based bioplastic achieved 38.9% weight loss in a 5-day observation.

2012 ◽  
Vol 32 (6-7) ◽  
pp. 435-444 ◽  
Author(s):  
Hsin-Tzu Liao ◽  
Chin-San Wu

Abstract Melt blending of polylactide (PLA), poly(ε-caprolactone) (PCL), and wood flour (WF) was performed in an effort to overcome the major drawbacks (brittleness and high price) of PLA. In addition, the acrylic acid (AA)-grafted PLA70PCL30 (PLA70PCL30-g-AA) was used as the alternative for the preparation of ternary blends to improve the compatibility and the dispersability of WF within the PLA70PCL30 matrix. As expected, PCL improved the elongation at break and the toughness of PLA but decreased the tensile strength and modulus. Because the hydrophilic WF is dispersed physically in the hydrophobic PLA70PCL30 matrix, as the result of Fourier transform infrared analysis, the mechanical properties of PLA70PCL30 became noticeably worse when it was blended with WF. This problem was successfully conquered by using PLA70PCL30-g-AA to replace PLA70PCL30 due to the formation of an ester carbonyl group between PLA70PCL30-g-AA and WF. Furthermore, the PLA70PCL30-g-AA/WF blend provided a plateau tensile strength at break when the WF content was up to 50 wt%. PLA70PCL30/WF exhibited a tensile strength at break of approximately 3–25 MPa more than PLA70PCL30-g-AA/WF. By using p-cresol and tyrosinase, the enzymatic biodegradable test showed that PLA70PCL30-g-AA is somewhat more biodegradable than PLA70PCL30 because the former has better water absorption. After 16 weeks, the weight loss of the PLA70PCL30/WF (50 wt%) composite was >80%. PLA70PCL30-g-AA/WF exhibited a weight loss of approximately 1–12 wt% more than PLA70PCL30-g-AA/WF. It was also found that the addition of WF to PLA70PCL30 or PLA70PCL30-g-AA decreased the crystallinity of PLA and PCL in PLA70PCL30 or PLA70PCL30-g-AA and then increased their biodegradable property.


2016 ◽  
Vol 846 ◽  
pp. 673-678 ◽  
Author(s):  
Nurul Aina Ismail ◽  
Syuhada Mohd Tahir ◽  
Yahya Norihan ◽  
Muhamad Firdaus Abdul Wahid ◽  
Nur Ezzati Khairuddin ◽  
...  

This study was carried out to evaluate the potential of plastic synthesized using bio-based starch. The method began with extraction of starch from chosen tubers with high content of starch; potato and yam. The samples were first grated, grinded and strained to obtain crude starch, which then centrifuged and rinsed to get pure starch. The starch was then reacted with hydrochloric acid to breakdown amylopectin to prevent the starch from becoming plastic-like. Finally, propan-1,2,3-triol was added as a plasticizer to increase the elasticity of the product. The chemical, mechanical, and thermal properties of the products were analyzed using Fourier transform infrared (FTIR), tensile strength tester and Thermogravimetric analysis (TGA). The FTIR spectra of the product displayed the presence of O-H, C-H, C=O and C-O absorption peaks, which indicate the formation of bioplastic has already occured. The tensile strength obtained for potato and yam starch-based bioplastic are 0.6 MPa and 1.9 MPa, respectively. The result gained from TGA showed that 50% weight loss occurred at 250°C for potato and 310°C for yam-based plastic. The highly biodegradability of the plastic was proven using soil burial test, which observed the percentage of soil biodegradation for potato and yam-based bioplastic in 1 week duration is 43% and 26%, respectively. These bio-based plastics have exhibited good thermal and mechanical properties with high biodegradability that makes them a suitable alternative for the existing conventional plastics.


2011 ◽  
Vol 236-238 ◽  
pp. 1877-1880
Author(s):  
Yan Wu ◽  
Ding Guo Zhou ◽  
Si Qun Wang ◽  
Yang Zhang ◽  
Xin Wang ◽  
...  

In this study, rice straw (Oryza sativa L.) fibril and fibril aggregates (RSFs) material isolated by high intensity ultrasonication (HIUS) was used as reinforcement in an RSFs/Polypropylene (PP) nanocomposites. The morphology of RSFs was investigated by scanning electron microscopy (SEM). The mechanical properties were evaluated by tensile test. The fourier transform infrared spectroscopy (FTIR) test was also performed to investigate the interface compatibility between RSFs and PP matrix. Results indicated that the tensile strength of RSFs/PP nanocomposites increased with increasing cycle time of extruder from 10 min to 30 min at 180°C. The maximum value of tensile strength was 31.2 MPa appeared at the conditions of 190°C and cycle 20 min. The elastic modulus increased by adding 5 wt% RSFs into the PP/MAPP matrix. However, there was no distinct difference of elongation in RSFs/PP nanocomposites at different extruder conditions. The RSFs embedded into the PP/MAPP matrix and exhibited better interaction by FTIR test.


2021 ◽  
Vol 56 (3) ◽  
pp. 215-222
Author(s):  
MA Hashem ◽  
MHR Sheikh ◽  
Rahamatullah ◽  
M Biswas ◽  
MA Hasan ◽  
...  

In tannery, fleshing is the unavoidable solid waste which has negative effect on the environment. Fleshing contains fat, and protein.In this work, fat extracted fleshing was used for composite fabrication. After collecting limed fleshing, fat was extracted in water bath.The fat extracted fleshing was dried, ground,passes through 80-mesh and homogenized.For proper adhesion and bonding with fleshing powder, epoxy resin and hardener were mixed at various ratios and poured onto an aluminum sheetfor 24 h curing. The mechanical properties of the composite were investigated by tensile strength, elongation at break, and Young’s modulus. The composite was characterized by Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscope (SEM) for related functional groups and surface analysis. The investigation provided satisfactory information on the proper bonding of the fleshing powder and resin/hardener. The approach explores the valorization of he waste for managing solid waste in the tannery. Bangladesh J. Sci. Ind. Res.56(3), 215-222, 2021


2018 ◽  
Vol 280 ◽  
pp. 323-329
Author(s):  
L.W. Wan ◽  
Mohd Kahar A. Wahab

The chitosan starch film was produce through solution casting with different carboxylic acid for acid treatment. Several testing were conducted such as tensile test, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), moisture absorption and soil burial. The optimum ratio for the chitosan/starch was 70:30. This ratio shows the highest tensile strength which is 11.84 MPa for the control film. The acid used for chemical modifications were citric acid and ascorbic acid. This acid modificationsexhibited higher tensile strength, Young's modulus, and less weight loss in soil burial and lower percentage of moisture absorption. SEM shows the better solubility of the starch in film with acid treatment. Moisture absorption and weight loss in the soil burial test was lower in the film with acid treatment than thefilm without acid treatment.


Author(s):  
Jeanger P. Juanga-Labayen ◽  
Qiuyan Yuan

This study evaluates the efficacy of using textile waste blended with paper waste to form biodegradable seedling pots. A bio-composite blend of cotton (20% cotton, 40% newspaper, and 40% corrugated cardboard) and polycotton (20% polycotton, 40% newspaper, and 40% corrugated cardboard) with an optimum strength was formed into seedling pots. The appreciated seedling pots (untreated blends of cotton and polycotton) were compared with the commercial pots (cardboard seed starter pot and Jiffy pot) in terms of mechanical properties (tensile strength and compressive strength), biodegradability (soil burial test and anaerobic digestion), and seed germination. The untreated blends of cotton and polycotton pots demonstrated a comparable optimum strength, while the Jiffy pot and cardboard seed starter pot obtained the least tensile and compressive strengths, respectively. The anaerobic biodegradability assay suggests that the cotton blend pot, polycotton blend pot, and cardboard seed starter pot can degrade anaerobically because of high biogas and methane generation potential. A 100% seed germination was observed from the four seedling pots tested. Thus, the results demonstrate the efficacy of utilizing textile waste and paper waste to develop seedling pots with desirable strength and biodegradability compared to the commercial pots.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2174
Author(s):  
Diana Gregor-Svetec ◽  
Mirjam Leskovšek ◽  
Blaž Leskovar ◽  
Urška Stanković Elesini ◽  
Urška Vrabič-Brodnjak

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1064
Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Mohd Ali Hassan ◽  
Nor Azowa Ibrahim ◽  
...  

Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55–56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced.


2014 ◽  
Vol 1611 ◽  
pp. 95-104 ◽  
Author(s):  
Nadira Mathura ◽  
Duncan Cree ◽  
Ryan P. Mulligan

ABSTRACTIn many tropical countries coconut (coir) fiber production is a major source of income for rural communities. The Caribbean has an abundance of coconuts but research into utilizing its by-products is limited. Environmentally friendly coir fibers are natural polymers generally discarded as waste material in this region. Research has shown that coir fiber from other parts of the world has successfully been recycled. This paper therefore investigates the mechanical properties of Caribbean coir fiber for potential applications in civil engineering.Approximately four hundred fibers were randomly taken from a coir fiber stack and subjected to retting in both distilled and saline water media. The mechanical properties of both the retted and unretted coir fibers were evaluated at weekly increments for a period of 3 months. Tensile strength test, x-ray diffraction analysis and scanning electron micrographs were used to assess trends and relationships between fiber gauge lengths, diameter, tensile strength and Young’s modulus. Diameters ranged between 0.11 mm-0.46 mm, while fiber samples were no longer than 250 mm in length. The tensile strength and strain at break decreased as the gauge length increased for both unretted and retted fibers. The opposite occurred for the relationship between the gauge length and Young’s modulus. Additionally, the tensile strength and modulus decreased as the fiber diameter increased. Neither distilled nor saline water improved the coir fiber’s crystalline index. Scanning electron micrographs qualitatively assessed fiber surfaces and captured necking and microfibril degradation at the fractured ends.The analysis revealed that the tensile strength, modulus, strain at break and crystallinity properties of the Caribbean coir fibers were comparable to commercially available coir fiber which are currently being used in many building applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


Sign in / Sign up

Export Citation Format

Share Document