scholarly journals INFLUENCE OF ENVIRONMENTAL CONDITIONS ON PRODUCTION OF SECONDARY METABOLITES BY FUSARIUM SPECIES.

1988 ◽  
Vol 1988 (1Supplement) ◽  
pp. 85-86
Author(s):  
ULF THRANE ◽  
FLEMMING LUND
Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2235
Author(s):  
Jana Chrpová ◽  
Matyáš Orsák ◽  
Petr Martinek ◽  
Jaromír Lachman ◽  
Martina Trávníčková

This article provides a summary of current knowledge about wheat metabolites that may affect resistance against Fusarium head blight (FHB). The mechanisms of resistance, the roles of secondary metabolites in wheat defense, and future directions for breeding are assessed. The soluble phenols play an important role in redox regulation in plant tissues and can act as antimicrobial compounds. The color of cereal hulls and grains is caused by such natural pigments as anthocyanins in the aleurone, endosperm, and pericarp layers of the grain. Phenolic acids, alkylresorcinols, and phytohormones actively participate in the defense system, whereas carotenoids show various effects against Fusarium species that are positively correlated with the levels of their mycotoxins. Pathogen infestation of vegetative tissues induces volatile organic compounds production, which can provide defensive functions to infested wheat. The efficient use of native resistance in the wheat gene pool, introgression of resistant alleles, and implementation of modern genotypic strategies to increase levels of native secondary metabolites with antifungal properties can enhance the FHB resistance of new varieties. Expanding the breeding interest in the use of forms with different grain color and plant organs can be a potential benefit for the creation of lines with increased resistance to various stresses.


2005 ◽  
Vol 2005 ◽  
pp. 102-102 ◽  
Author(s):  
D. D. Moore

Mycotoxins are secondary metabolites produced by fungi under certain stress periods (Smith and Seddon 1998). When ingested, mycotoxins cause insidious losses, ill thrift and reduced disease resistance. Zearalenone is known to cause hyperestrogesium in pigs and hence a reduction in fertility in both sows and boars can occur (Binder 2004). Certain mycotoxins such as zearalenone (ZEA) and deoxinivalenol (DON) are produced by fungi of the fusarium species on crops in the field. Fusarium pseudograminearum (Crown Rot) produces both DON and ZEA in decreasing levels up the tiller of winter cereals (Blaney et al. 1987). Most studies carried out so far analysed the occurrence of mycotoxins in the grain and less is known about the prevalence of mycotoxins in the straw of the crop. Housing of sows during gestation on straw is becoming a favoured production system due to environmental and public perception pressures. The intake of straw by weaners on straw based systems has been found to account for 11.5% of total feed intake (Barneveld et al. 2004), such that there could be a considerable risk for increased ingestion of mycotoxins in animals on straw based systems. The objective of this study was to investigate the occurrence of mycotoxins in straw used for deep litter in Australian deep litter pig production systems.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 664 ◽  
Author(s):  
Lakshmipriya Perincherry ◽  
Justyna Lalak-Kańczugowska ◽  
Łukasz Stępień

Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1259
Author(s):  
Agnieszka Śliżewska ◽  
Ewa Żymańczyk-Duda

Cyanobacteria constitute an interesting group of photosynthetic microorganisms due to their morphological and genetic diversity that is related to their extremely long evolution process, which created the need for them to adapt to immensely heterogeneous environmental conditions. Cyanobacteria grow in salt and fresh waters as well as on the surface of soils and rocks. The diverse cell structure is characterized by the fact that they occur in many morphological forms, from small single cells through to larger ones as well as branches, threads, or spirals. Taking into account the presence of cyanobacteria in virtually all possible conditions and places on Earth, cyanobacteria represent an unexplored potential that is worth investigating. This review presents the possibilities of using algae in chosen areas of biotechnology: e.g., as biocatalysts or in industries such as the pharmaceutical industry. It covers the characteristics of secondary metabolites along with their division and the potential of using them as sources of effective drugs for many diseases. It presents an overview of the possibilities of using cyanobacteria in biotransformation processes. These processes are of great importance in the case of, for example, the neutralization of municipal, industrial, or chemical waste, the amount of which is constantly growing every year, and they are also an easier and cheaper path to obtain chemical compounds.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2193-2201 ◽  
Author(s):  
Jianbo Qiu ◽  
Yunan Lu ◽  
Dan He ◽  
Yin-Won Lee ◽  
Fang Ji ◽  
...  

Species belonging to the Fusarium fujikuroi species complex (FFSC) are of vital importance and are a major concern for food quantity and quality worldwide, as they not only cause serious diseases in crops but also produce various mycotoxins. To characterize the population structure and evaluate the risk of poisonous secondary metabolites, a total of 237 candidate strains were isolated from rice, maize, and soybean samples in Jiangsu Province, China. Species identification of the individual strain was accomplished by sequencing the translation elongation factor 1α gene (TEF-1α) and the fumonisin (FB) synthetic gene (FUM1). The distribution of Fusarium species among the different crops was observed. The maize seeds were dominated by F. proliferatum (teleomorph, Gibberella intermedia) and F. verticillioides (teleomorph, G. moniliformis), whereas F. fujikuroi (teleomorph, G. fujikuroi) was the most frequently isolated species from rice and soybean samples. In addition, phylogenetic analyses of these strains were performed, and the results suggested clear groups showing no obvious relationship with the origin source. FFSC species pathogenicity and toxigenicity were studied. All of the species reduced the rice seed germination rate, with no significant differences. F. fujikuroi showed two distinct patterns of influencing the length of rice seedlings, which were correlated with FBs and gibberellic acid synthesis. FBs were mainly produced by F. verticillioides and F. proliferatum. F. proliferatum and F. fujikuroi also produced moniliformin and beauvericin. The toxigenicity of F. andiyazi (teleomorph, G. andiyazi) was extremely low. Further analysis indicated that the sequence variations in TEF-1α and the differences in the expression levels of the toxin synthesis genes were associated with the diversity of secondary metabolites in F. fujikuroi strains. These findings provide insight into the population-level characterization of the FFSC and might be helpful in the development of strategies for the management of diseases and mycotoxins.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 880 ◽  
Author(s):  
Lukas P. Thorburn ◽  
Lynn S. Adler ◽  
Rebecca E. Irwin ◽  
Evan C. Palmer-Young

Secondary metabolites in floral nectar have been shown to reduce parasite load in two common bumble bee species. Previous studies on the effects of nectar secondary metabolites on parasitized bees have focused on single compounds in isolation; however, in nature, bees are simultaneously exposed to multiple compounds. We tested for synergistic effects of two alkaloids found in the nectar of Nicotiana spp. plants, nicotine and anabasine, on parasite load and mortality in bumble bees (Bombus impatiens) infected with the intestinal parasite Crithidia bombi. Adult worker bees inoculated with C. bombi were fed nicotine and anabasine diet treatments in a factorial design, resulting in four nectar treatment combinations:  2 ppm nicotine, 5 ppm anabasine, 2ppm nicotine and 5 ppm anabasine together, or a control alkaloid-free solution. We conducted the experiment twice: first, with bees incubated under variable environmental conditions (‘Variable’; temperatures varied from 10-35°C); and second, under carefully controlled environmental conditions (‘Controlled’; 27°C incubator, constant darkness). In ‘Variable’, each alkaloid alone significantly decreased parasite loads, but this effect was not realized with the alkaloids in combination, suggesting an antagonistic interaction. Nicotine but not anabasine significantly increased mortality, and the two compounds had no interactive effects on mortality. In ‘Controlled’, nicotine significantly increased parasite loads, the opposite of its effect in ‘Variable’. While not significant, the relationship between anabasine and parasite loads was also positive. Interactive effects between the two alkaloids on parasite load were non-significant, but the pattern of antagonistic interaction was similar to that in the variable experiment. Neither alkaloid, nor their interaction, significantly affected mortality under controlled conditions. Our results do not indicate synergy between Nicotiana nectar alkaloids; however, they do suggest a complex interaction between secondary metabolites, parasites, and environmental variables, in which secondary metabolites can be either toxic or medicinal depending on context.


2021 ◽  
Vol 7 (12) ◽  
pp. 1004
Author(s):  
Lakshmipriya Perincherry ◽  
Natalia Witaszak ◽  
Monika Urbaniak ◽  
Agnieszka Waśkiewicz ◽  
Łukasz Stępień

Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate no/very low amounts of mycotoxins. The ability of the host plant to modulate the biosynthesis of these toxins is entirely depending on the secondary metabolites produced by the plant, often as a part of systemic acquired resistance (SAR). A major role plays in the family of metabolites called phenyl propanoids, consisting of thousands of natural products, synthesized from the phenylalanine or tyrosine amino acids through a cascade of enzymatic reactions. They are also famous for inhibiting or limiting infection through their antioxidant characteristics. The current study was aimed at identifying the differentially expressed secondary metabolites in resistant (Sokolik) and susceptible (Santana) cultivars of pea (Pisum sativum L.) and understanding their roles in the growth and mycotoxin biosynthesis of two different Fusarium species. Although metabolites such as coumarin, spermidine, p-coumaric acid, isoorientin, and quercetin reduced the growth of the pathogen, a higher level of p-coumaric acid was found to enhance the growth of F. proliferatum strain PEA1. It was also noticeable that the growth of the pathogen did not depend on their ability to produce mycotoxins, as all the metabolites were able to highly inhibit the biosynthesis of fumonisin B1 and beauvericin.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 912C-912
Author(s):  
F.A. Buffone ◽  
D.R. LaBonte ◽  
C.A. Clark

Chlorotic leaf distortion is a common disease of sweetpotato caused by Fusarium lateritium. This fungus is unique among Fusarium species in that it grows epiphytically on leaves and shoot tips of sweetpotato. Fusarium lateritium mycelia appear as white masses on leaves, and this fungus can cause chlorosis under periods of bright sunlight. When environmental conditions are not favorable for growth, this organism is not readily observed on sweetpotato. The objective of this research was to see if DNA of F. lateritium is amplified using PCR techniques during amplification of sweetpotato DNA. Our results show cTAB extracts of sweetpotato inoculated with F. lateritium have additional bands not present in a control free of F. lateritium. Furthermore, these bands correspond to banding patterns obtained from the F. lateritium isolate DNA when amplified alone. Researchers who use sweetpotato tissue in PCR-based research, e.g., phylogenetic research, should be aware of these amplified products. This situation is further compounded because numerous F. lateritium biotypes are present in the environment.


Sign in / Sign up

Export Citation Format

Share Document