Interictal Electroencephalogram Changes in Patients with Seizure Disorder in Al-Basrah General Hospital

Author(s):  
Suroor Mohamed Dahiam ◽  
Farah Nabil Abbas ◽  
Ahmed Abdaljawad Salim

This study investigated the optimum conditions for the total pharmaceutical and personal care products (PPCPs) removal from PPCPs-contaminated tap water using ozonation treatment. The optimum conditions for maximum PPCPs removal were determined through a Box-Behnken Design (BBD). Three operational variables, i.e. PPCPs concentration (1-600 µg/L, retention time15-30 min and pH 6-9 units) were investigated by setting PPCPs removal concentration as the maximum. The optimum conditions were selected with the highest desirability of 0.967 using the maximum concentration of PPCPs and highest removal of PPCPs from the water (95-100 %) with the minimum retention time for 15 min and the pH was set at pH 8.9. From a validation test of the optimum conditions, it was found that the maximum PPCPs removal from contaminated tap water was closely to the predicted ones with less than 5% error for all the four compounds which give an evidence that ozonation is a good technique to remove PPCPs from water stream.

2000 ◽  
Author(s):  
Y. H. Zheng ◽  
R. S. Amano

Abstract This paper summarizes the mass transfer modeling that can simulate the process of gaseous carbon dioxide dissolution into water in an orifice mixing system. In order to establish the operating characteristics of the orifice mixing system, ordinary tap water and pure carbon dioxide were used as the liquid-gas system. Using the model, computations were performed for an orifice mixing system to better understand the mass transfer process of gaseous carbon dioxide into water through both the elbow tube and the junction Venturi-tube. All computed results show different performance of the carbon dioxide dissolution rates for the given inlet water and carbon dioxide conditions of the four different designs of the junction type Venturi-tubes and an orifice mixing system. After examining the computed results it was found that the mass transfer efficiency of gaseous carbon dioxide into the water stream through the orifice mixing system was superior to that through the junction Venturi-tubes.


2020 ◽  
Vol 870 ◽  
pp. 81-96
Author(s):  
Ali A. Jazie ◽  
Riyam Imad Jaddan ◽  
Mohamed F. Al-Dawody ◽  
Suhad A. Abed

Ethyl acetate as acyl accepter have been used for sewage sludge biodiesel production in micro packed bed reactor. Lipase acrylic resin enzyme activity was investigated in the interesterification reaction of converting the sewage sludge into a biodiesel product. The main parameters affecting the process was adjusted via the design of Box-Behnken and approach of response surface then the optimum conditions were as follow (reaction time=15 h, ethyl acetate/oil ratio=24:1, temperature=40 °C and enzyme quantity=18 wt%) providing 95.78 % biodiesel yield. The lipase acrylic resin was examined under the optimum conditions for the reusability. the flow effect and the heating process of the micro packed bed reactor was investigated. The product biodiesel physicochemical properties were evaluated according to the ASTM D-6751-2 and found acceptable comparable to the mineral diesel properties.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1580
Author(s):  
Farokh laqa Kakar ◽  
Ahmed El Sayed ◽  
Neha Purohit ◽  
Elsayed Elbeshbishy

The main objective of this study was to evaluate the hydrothermal pretreatment’s retention time influence on the volatile fatty acids and biomethane production from thickened waste activated sludge under mesophilic conditions. Six different retention times of 10, 20, 30, 40, 50, and 60 min were investigated while the hydrothermal pretreatment temperature was kept at 170 °C. The results showed that the chemical oxygen demand (COD) solubilization increased by increasing the hydrothermal pretreatment retention time up to 30 min and stabilized afterwards. The highest COD solubilization of 48% was observed for the sample pretreated at 170 °C for 30 min. Similarly, the sample pretreated at 170 °C for 30 min demonstrated the highest volatile fatty acids yield of 14.5 g COD/Lsubstrate added and a methane yield of 225 mL CH4/g TCODadded compared to 4.3 g COD/Lsubstrate added and 163 mL CH4/g TCODadded for the raw sample, respectively. The outcome of this study revealed that the optimum conditions for solubilization are not necessarily associated with the best fermentation and/or digestion performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Amine Bouaziz ◽  
Manel Masmoudi ◽  
Amel Kamoun ◽  
Souhail Besbes

Experimental design methodology was used to determine significant factors affecting the extraction yield of soluble and insoluble fibres fromAgave americanaL. and in second time to find optimum conditions leading to the highest yield. Results clearly indicated that the temperature, the powder to water (P/W) ratio, and the agitation speed were the most important factors influencing fibres extraction yield which increased with temperature, P/W ratio, and agitation speed. Ionic strength affected significantly soluble fibre extraction yield and was the most important factor among nonsignificant ones influencing insoluble fibres extraction yield. Then, a Box-Behnken design was carried out to maximise fibres extraction. Selected optimal conditions were temperature: 90°C; P/W ratio: 0.1625; agitation speed: 400 rpm; and ionic strength: 1.5 g/L. These conditions yielded 93.02% and 80.46% of insoluble and soluble fibres, respectively. Concentrates showed high fibres purity and good functional properties.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1483
Author(s):  
Pablo Salgado ◽  
José Luis Frontela ◽  
Gladys Vidal

In this work, the Fenton technology was applied to decolorize methylene blue (MB) and to inactivate Escherichia coli K12, used as recalcitrant compound and bacteria models respectively, in order to provide an approach into single and combinative effects of the main process variables influencing the Fenton technology. First, Box–Behnken design (BBD) was applied to evaluate and optimize the individual and interactive effects of three process parameters, namely Fe2+ concentration (6.0 × 10−4, 8.0 × 10−4 and 1.0 × 10−3 mol/L), molar ratio between H2O2 and Fe2+ (1:1, 2:1 and 3:1) and pH (3.0, 4.0 and 5.0) for Fenton technology. The responses studied in these models were the degree of MB decolorization (D%MB), rate constant of MB decolorization (kappMB) and E. coli K12 inactivation in uLog units (IuLogEC). According to the results of analysis of variances all of the proposed models were adequate with a high regression coefficient (R2 from 0.9911 to 0.9994). BBD results suggest that [H2O2]/[Fe2+] values had a significant effect only on D%MB response, [Fe2+] had a significant effect on all the responses, whereas pH had a significant effect on D%MB and IuLogEC. The optimum conditions obtained from response surface methodology for D%MB ([H2O2]/[Fe2+] = 2.9, [Fe2+] = 1.0 × 10−3 mol/L and pH = 3.2), kappMB ([H2O2]/[Fe2+] = 1.7, [Fe2+] = 1.0 × 10−3 mol/L and PH = 3.7) and IuLogEC ([H2O2]/[Fe2+] = 2.9, [Fe2+] = 7.6 × 10−4 mol/L and pH= 3.2) were in good agreement with the values predicted by the model.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 251
Author(s):  
Diler Katircioglu-Bayel

The optimization of the operating parameters of a stirred media mill in the dry grinding of calcite was investigated. A three-level Box-Behnken design was used for the purpose of examining the impact of four independent factors, the stirrer speed (SS), grinding time (GT), media filling ratio (MFR), and solid mass fraction (SMF), on the product particle size (d50). For the purpose of establishing an empirical correlation between operating parameters and responses, a series of experiments were carried out. Variance analysis showed a reasonably good value for d50 (R2 = 0.965). According to the software solutions, the optimum conditions for minimizing the d50 size were found to be 573 rpm stirrer speed, 11.18 min grinding time, 63% media filling ratio, and 11.52% solid mass fraction, with 3.78 µm for the d50 size. To verify the improvement of grinding, verification tests were performed using the above-mentioned optimum conditions and the average d50 size and standard deviation were found to be 3.83 µm and 0.025, respectively. The average d50 value obtained was smaller than those obtained in the 27 tests. Furthermore, when the optimum result obtained from the experiments was compared with the result obtained using the software, a 22% energy saving was achieved. The impacts of grinding on the structural characteristics of calcite particles were characterized by XRD analysis. XRD measurements indicated that no change was observed in the peak areas of ground calcite specimens compared to the untreated calcite specimen.


2020 ◽  
Author(s):  
Roland Stumpf ◽  
Dörte Budziak ◽  
Nico Deus ◽  
Jörg Elbracht

<p><span>Uranium is a trace metal yielding an average concentration in the Earth’s crust of about 2 to 4 mg/kg, and it occurs naturally in low levels in rock, soil, and water. Although widely known for its radioactive properties, at low levels dissolved uranium is more harmful by its chemical toxicity. The World Health Organisation (WHO) recommends a maximum concentration of 30 µg/l uranium in tap water, as well as a tolerable daily intake limit of 0.6 µg/kg body weight. Since 2011, tap water in Germany must not exceed uranium concentrations of 10 µg/l. </span></p><p><span>The uranium budget of the groundwater in Lower Saxony comprises mainly of geogenic input through water-rock interaction along the hydrological cycle and within the respective hydrogeological units, and possibly through century-old mining activities, and more recently the use of uranium bearing mineral fertilisers in farming. While the vast majority of uranium concentrations are significantly below 10 µg/l with many values below detection limit, some detached areas display elevated uranium with one confined maximum concentration of 124 µg/l. In order to determine uranium background values, statistical analyses accounted for hydrogeological units of the aquifer, land use, and well depths. Anomalous peak concentrations are unlikely to be a result of variations in geogenic background values alone and require further investigations. A possible rise of uranium concentrations caused by a downward shifting redox front, as proposed in other regions in Northern Germany, is yet to be identified in Lower Saxony.</span></p>


2013 ◽  
Vol 63 (2) ◽  
pp. 193-207 ◽  
Author(s):  
Ajit A. Patil ◽  
Sachin S. Bhusari ◽  
Devanand B. Shinde ◽  
Pravin S. Wakte

The response surface methodology using the Box-Behnken design was established to describe supercritical carbon dioxide assisted extraction of phyllanthin from Phyllanthus amarus Schum and Thonn leaves prior to HPLC analysis. The effects of extraction pressure, temperature, modifier concentration and extraction time on the yield of phyllanthin were investigated. By solving the regression equation, the optimum conditions were as follows: extraction pressure 23.2 MPa, temperature 40 °C, methanol as modifier at a concentration of 10 % and time 90 min. Under these conditions, the phyllanthin yield was 12.83 ± 0.28 mg g-1, which was in good agreement with the predicted values. Modifier concentration and extraction time showed a significant effect on the phyllanthin yield.


2014 ◽  
Vol 13 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Marija Zlojtro ◽  
Mateja Jankovic ◽  
Miroslav Samarzija ◽  
Ljiljana Zmak ◽  
Vera Katalinic Jankovic ◽  
...  

Nontuberculous mycobacteria (NTM) are opportunistic pathogens found in natural and human-engineered waters. In 2009, a relative increase in the isolation of Mycobacterium gordonae from pulmonary samples originating from General Hospital Zabok was noted by the National Mycobacteria Reference Laboratory. An epidemiological survey revealed a contamination of the cold tap water with M. gordonae and guidelines regarding sputum sample taking were issued. In addition, all incident cases of respiratory infection due to NTM reported from 2007 to 2012 at General Hospital Zabok were included in a retrospective review. Out of 150 individual NTM isolates, M. gordonae was the most frequently isolated species (n = 135; 90%) and none of the cases met the criteria of the American Thoracic Society for pulmonary NTM disease. While concomitant Mycobacterium tuberculosis infection was confirmed in only 6 (4%) patients, anti-tuberculosis treatment was initiated for a significant portion of patients (n = 64; 42.6%) and unnecessary contact tracing was performed. This study points out the need to enhance the knowledge about NTM in our country and indicates the importance of faster NTM identification, as well as the importance of good communication between laboratory personnel and physicians when evaluating the significance of the isolated NTM.


2021 ◽  
Vol 6 (1) ◽  
pp. 14-19
Author(s):  
Yuniar Yuniar ◽  
◽  
Siti Nuraini

The Pre-concentration of Cd(II) in water samples was carried out by using column solid phase extraction DOWEX 50WX2 prior to flame atomic absorption spectrometry analyzed. The analytical parameters consist of pH, flow rate, volume of eluent and volume of sample were determined.The optimum conditions were obtained pH was 5, sample flow rate was 1 mL min−1, volume of eluent nitric acid 1N was 10 mL and sample volume was 50 mL. The optimum conditions obtained were used to determine the detection limit and the accuracy of the method using tap water samples. Determination of detection limit used tap water which contain Cd 0.001 mg L-1 and the accuracy (recovery,%R) with concentration of Cd 0.01 mg L-1. The detection limit was found 0.2697±0.0899 µg L− 1 (n=7) and accuracy (n=7) was 93±6%. The result showed the accuracy still meets the acceptance criteria for accuracy (70%-125%) and the RSD 6% is smaller than the Horwitz value of 20.8%. Based on the accuracy (R%) and % RSD values obtained, it can be concluded that this method provides effective results for pre-concentration to increase the detection limit of Cd (II)in clean water using SSA-flame.


Sign in / Sign up

Export Citation Format

Share Document