scholarly journals Behavioural and molecular effects of alcohol in the stress model of zebrafish

2021 ◽  
Vol 65 ◽  
pp. 153-161
Author(s):  
Juan Esteban Franco-Restrepo ◽  
Rafael Antonio Vargas Vargas

Objectives: Stress and anxiety disorders are common health problems that have been related to an increase in the likelihood of developing addictions, which have individual and social consequences. Although socially acceptable, alcohol is a substance that can generate dependence and abuse. Alcohol misuse, its relationship with stress and its consequences have been studied; however, multiple limitations are placed on clinical research in humans. In this exploratory work, we analysed the behavioural and molecular effects of joint exposure to ethanol and an unpredictable stress protocol (USP) in adult zebrafish. Materials and Methods: Adult zebrafish behaviour was studied employing unpredictable stress and behavioural tests. The tests were performed in stressed and nonstressed animals with and without exposure to known concentrations of alcohol. To evaluate the behaviour, tracking techniques were used on video recordings and parameters such as distance travelled, swimming speed and place preference as well as aggression patterns with mirror proximity tests were measured. In the control and 0.75% alcohol group, the expression of candidate stress-related genes (slc6a4a, slc6a3, comta and bdnf3) was analysed by RT-qPCR. Results: The results showed that concentrations of 0.75% alcohol reduced the locomotor activity of the fish, which can be interpreted as an increase in the anxiolytic effect of alcohol under nonstress conditions. Expression of comta, bdnf3 and slc6a3 was reduced in the stress and stress plus 0.75% ethanol groups and expression of slc6a4a was increased in the stress plus 0.75% alcohol group. Conclusion: Our exploratory work contributes novel insights about the molecular and behavioural effects of the combination of unpredicted stress and alcohol misuse. The USP and ethanol exposure increase anxiety behaviour and reduce the expression of genes involved in brain homeostasis. Future study of other pharmacological compounds and additional genes will be helpful for a deeper understanding of the molecular mechanisms involved in the response to stress and alcohol use.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1328
Author(s):  
Noushin Jahan ◽  
Yang Lv ◽  
Mengqiu Song ◽  
Yu Zhang ◽  
Liangguang Shang ◽  
...  

Salinity is a major abiotic stressor that leads to productivity losses in rice (Oryza sativa L.). In this study, transcriptome profiling and heterosis-related genes were analyzed by ribonucleic acid sequencing (RNA-Seq) in seedlings of a mega rice hybrid, Liang-You-Pei-Jiu (LYP9), and its two parents 93–11 and Pei-ai64s (PA64s), under control and two different salinity levels, where we found 8292, 8037, and 631 salt-induced differentially expressed genes (DEGs), respectively. Heterosis-related DEGs were obtained higher after 14 days of salt treatment than after 7 days. There were 631 and 4237 salt-induced DEGs related to heterosis under 7-day and 14-day salt stresses, respectively. Gene functional classification showed the expression of genes involved in photosynthesis activity after 7-day stress treatment, and in metabolic and catabolic activity after 14 days. In addition, we correlated the concurrence of an expression of DEGs for the bHLH transcription factor and a shoot length/salinity-related quantitative trait locus qSL7 that we fine-mapped previously, providing a confirmed case of heterosis-related genes. This experiment reveals the transcriptomic divergence of the rice F1 hybrid and its parental lines under control and salt stress state, and enlightens about the significant molecular mechanisms developed over time in response to salt stress.


Author(s):  
Dandan Wang ◽  
Brian W. Howell ◽  
Eric C. Olson

AbstractFetal alcohol syndrome (FAS) is characterized by disrupted fetal brain development and postnatal cognitive impairment. The targets of alcohol are diverse, and it is not clear whether there are common underlying molecular mechanisms producing these disruptions. Prior work established that acute ethanol exposure causes a transient increase in tyrosine phosphorylation of multiple proteins in cultured embryonic cortical cells. In this study, we show that a similar tyrosine phosphorylation transient occurs in the fetal brain after maternal dosing with ethanol. Using phospho-specific antibodies and immunohistochemistry, we mapped regions of highest tyrosine phosphorylation in the fetal cerebral cortex and found that areas of dendritic and axonal growth showed elevated tyrosine phosphorylation 10 min after maternal ethanol exposure. These were also areas of Src expression and Src family kinase (SFK) activation loop phosphorylation (pY416) expression. Importantly, maternal pretreatment with the SFK inhibitor dasatinib completely prevents both the pY416 increase and the tyrosine phosphorylation response. The phosphorylation response was observed in the perisomatic region and neurites of immature migrating and differentiating primary neurons. Importantly, the initial phosphotyrosine transient (~ 30 min) targets both Src and Dab1, two critical elements in Reelin signaling, a pathway required for normal cortical development. This initial phosphorylation response is followed by sustained reduction in Ser3 phosphorylation of n-cofilin, a critical actin severing protein and an identified downstream effector of Reelin signaling. This biochemical disruption is associated with sustained reduction of F-actin content and disrupted Golgi apparatus morphology in developing cortical neurons. The finding outlines a model in which the initial activation of SFKs by ethanol has the potential to disrupt multiple developmentally important signaling systems for several hours after maternal exposure.


2021 ◽  
pp. 030098582110063
Author(s):  
Francesco C. Origgi ◽  
Patricia Otten ◽  
Petra Lohmann ◽  
Ursula Sattler ◽  
Thomas Wahli ◽  
...  

A comparative study was carried out on common and agile frogs ( Rana temporaria and R. dalmatina) naturally infected with ranid herpesvirus 3 (RaHV3) and common toads ( Bufo bufo) naturally infected with bufonid herpesvirus 1 (BfHV1) to investigate common pathogenetic pathways and molecular mechanisms based on macroscopic, microscopic, and ultrastructural pathology as well as evaluation of gene expression. Careful examination of the tissue changes, supported by in situ hybridization, at different stages of development in 6 frogs and 14 toads revealed that the skin lesions are likely transient, and part of a tissue cycle necessary for viral replication in the infected hosts. Transcriptomic analysis, carried out on 2 naturally infected and 2 naïve common frogs ( Rana temporaria) and 2 naturally infected and 2 naïve common toads ( Bufo bufo), revealed altered expression of genes involved in signaling and cell remodeling in diseased animals. Finally, virus transcriptomics revealed that both RaHV3 and BfHV1 had relatively high expression of a putative immunomodulating gene predicted to encode a decoy receptor for tumor necrosis factor in the skin of the infected hosts. Thus, the comparable lesions in infected frogs and toads appear to reflect a concerted epidermal and viral cycle, with presumptive involvement of signaling and gene remodeling host and immunomodulatory viral genes.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Laura Piovani ◽  
Anna Czarkwiani ◽  
Cinzia Ferrario ◽  
Michela Sugni ◽  
Paola Oliveri

Abstract Background Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. Results Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. Conclusions We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Nonnis ◽  
E. Angiulli ◽  
E. Maffioli ◽  
F. Frabetti ◽  
A. Negri ◽  
...  

AbstractThis study investigated the effect of 4-d acute thermal treatments at 18 °C, 26 °C (control) and 34 °C on the nervous system of adult zebrafish (Danio rerio) using a multidisciplinary approach based on behavioural tests and brain proteomic analysis. The behavioural variations induced by thermal treatment were investigated using five different tests, the novel tank diving, light and dark preference, social preference, mirror biting, and Y-Maze tests, which are standard paradigms specifically tailored for zebrafish to assess their anxiety-like behaviour, boldness, social preference, aggressiveness, and explorative behaviour, respectively. Proteomic data revealed that several proteins involved in energy metabolism, messenger RNA translation, protein synthesis, folding and degradation, cytoskeleton organisation and synaptic vesiculation are regulated differently at extreme temperatures. The results showed that anxiety-like behaviours increase in zebrafish at 18 °C compared to those at 26 °C or 34 °C, whereas anxiety-related protein signalling pathways are downregulated. Moreover, treatments at both 18 °C and 34 °C affect the exploratory behaviour that appears not to be modulated by past experiences, suggesting the impairment of fish cognitive abilities. This study is the continuation of our previous work on the effect of 21-d chronic treatment at the same constant temperature level and will enable the comparison of acute and chronic treatment effects on the nervous system function in adult zebrafish.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 608
Author(s):  
Tian-Jiao Wei ◽  
Ming-Ming Wang ◽  
Yang-Yang Jin ◽  
Guo-Hui Zhang ◽  
Miao Liu ◽  
...  

Soil alkalization triggers ion toxicity and osmotic and alkaline (high pH) stresses in plants, damaging their growth and productivity. Therefore, we investigated whether priming with abscisic acid (ABA) increases the tolerance of alfalfa seedlings to alkaline stress, and then examined the underlying molecular mechanisms. Alfalfa seedlings were pretreated with ABA (10 μM) for 16 h and then subjected to alkaline stress using a 15 mM Na2CO3 solution (pH 10.87). Compared with the control, ABA pretreatment significantly alleviated leaf damage and improved the fresh weight, water content, and survival rate of alfalfa seedlings under alkaline conditions. Abscisic acid pretreatment reduced accumulation of reactive oxygen species (ROS), increased activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD), maintained higher ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+, and increased accumulation of proline. In addition, ABA upregulated the expression of genes involved in proline biosynthesis (P5CS) and the sequestration of Na+ in vacuoles (NHX1 and AVP) under alkaline conditions. Abscisic acid priming increased tolerance to alkaline stress by maintaining homeostasis of ROS and metal ions and upregulating osmoprotection and the expression of stress tolerance-related genes.


Author(s):  
Shan Ling ◽  
Michael W Jenkins ◽  
Michiko Watanabe ◽  
Stephanie M Ford ◽  
Andrew M Rollins

The etiology of ethanol-related congenital heart defects has been the focus of much study, but most research has concentrated on cellular and molecular mechanisms. We have shown with optical coherence tomography (OCT) that ethanol exposure led to increased retrograde flow and smaller atrioventricular (AV) cushions compared to controls. Since AV cushions play a role in patterning the conduction delay at the atrioventricular junction (AVJ), this study aims to investigate whether ethanol exposure alters the AVJ conduction in early looping hearts and whether this alteration is related to the decreased cushion size. Quail embryos were exposed to a single dose of ethanol at gastrulation, and Hamburger-Hamilton stage 19 - 20 hearts were dissected for imaging. Cardiac conduction was measured using an optical mapping microscope and we imaged the endocardial cushions using OCT. Our results showed that, compared with controls, ethanol-exposed embryos exhibited abnormally fast AVJ conduction and reduced cushion size. However, this increased conduction velocity (CV) did not strictly correlate with decreased cushion volume and thickness. By matching the CV map to the cushion size map, we found that the slowest conduction location was consistently at the atrial side of the AVJ, which had the thinner cushions, not at the thickest cushion location at the ventricular side as expected. Our findings reveal regional differences in the AVJ myocardium even at this early stage in heart development. These findings reveal the early steps leading to the heterogeneity and complexity of conduction at the mature AVJ, a site where arrhythmias can be initiated.


2021 ◽  
Vol 23 ◽  
Author(s):  
Mohsen Sheykhhasan ◽  
Yaghoub Ahmadyousefi ◽  
Reihaneh Seyedebrahimi ◽  
Hamid Tanzadehpanah ◽  
Hamed Manoochehri ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) have important roles in regulating the expression of genes and act as biomarkers in the initial development of different cancers. Increasing research studies have verified that dysregulation of lncRNAs occurs in various pathological processes including tumorigenesis and cancer progression. Among the different lncRNAs, DLX6-AS1 has been reported to act as an oncogene in the development and prognoses of different cancers, by affecting many different signalling pathways. This review summarises and analyses the recent research studies describing the biological functions of DLX6-AS1, its overall effect on signalling pathways and the molecular mechanisms underlying its action on the expression of genes in multiple human cancers. Our critical analysis suggests that different signalling pathways associated to this lncRNA may be used as a biomarker for diagnosis, or targets of treatment in cancers.


2013 ◽  
Vol 394 (7) ◽  
pp. 909-918 ◽  
Author(s):  
Srividya Vasu ◽  
Neville H. McClenaghan ◽  
Jane T. McCluskey ◽  
Peter R. Flatt

Abstract The novel insulin-secreting human pancreatic β-cell line, 1.1B4, demonstrates stability in culture and many of the secretory functional attributes of human pancreatic β-cells. This study investigated the cellular responses of 1.1B4 cells to lipotoxicity. Chronic 18-h exposure of 1.1B4 cells to 0.5 mm palmitate resulted in decreased cell viability and insulin content. Secretory responses to classical insulinotropic agents and cellular Ca2+ handling were also impaired. Palmitate decreased glucokinase activity and mRNA expression of genes involved in secretory function but up-regulated mRNA expression of HSPA5, EIF2A, and EIF2AK3, implicating activation of the endoplasmic reticulum stress response. Palmitate also induced DNA damage and apoptosis of 1.1B4 cells. These responses were accompanied by increased gene expression of the antioxidant enzymes SOD1, SOD2, CAT and GPX1. This study details molecular mechanisms underlying lipotoxicity in 1.1B4 cells and indicates the potential value of the novel β-cell line for future research.


Sign in / Sign up

Export Citation Format

Share Document