scholarly journals Numerical prediction of process-dependent properties of high-performance Ti6Al4 in LS-DYNA

2021 ◽  
Author(s):  
Johannes Buhl ◽  
Thomas Klöppel ◽  
Mathias Merten ◽  
Andre Haufe ◽  
Israr Rameez ◽  
...  

In modern manufacturing processes such as hot forming or additive manufacturing, the workpiece material undergoes very complex thermomechanical load cycles. The local mechanical properties in the component are process-dependent and the result of the different micro-structure evolution mechanisms in the material. Numerical process simulation tools aim to include more and more of these mechanisms in order to improve the accuracy of the simulations. The mechanical strength of high-performance materials such as Ti-6Al-4V depends on microstructural parameters, which are influenced by the temperature and strain histories. This contribution puts forward an implementation of a new generalized internal variables material model *MAT_GENERALIZED_PHASECHANGE in LS-DYNA. The evolution of internal variables such as phase fractions, grain size and dislocation densities can be predicted by evolution equations, and combined with yield stress models taking the contribution of the phases, grain sizes (Hall-Petch effect), and the dislocation density into account to predict the resulting mechanical properties of the processed material. The benefits of the implementation in the commercial software LS-DYNA is the possibility to solve complex coupled problems. For example, the new material law can be used to simulate hybrid manufacturing processes like forging and an additional additive manufacturing process, where changes in microstructure are highly coupled and important for the part properties.

2021 ◽  
Vol 15 (4) ◽  
pp. 491-497
Author(s):  
Tomislav Breški ◽  
Lukas Hentschel ◽  
Damir Godec ◽  
Ivica Đuretek

Fused filament fabrication (FFF) is currently one of the most popular additive manufacturing processes due to its simplicity and low running and material costs. Support structures, which are necessary for overhanging surfaces during production, in most cases need to be manually removed and as such, they become waste material. In this paper, experimental approach is utilised in order to assess suitability of recycling support structures into recycled filament for FFF process. Mechanical properties of standardized specimens made from recycled polylactic acid (PLA) filament as well as influence of layer height and infill density on those properties were investigated. Optimal printing parameters for recycled PLA filaments are determined with Design of Experiment methods (DOE).


2021 ◽  
Vol 263 (4) ◽  
pp. 2708-2723
Author(s):  
Manuel Bopp ◽  
Arn Joerger ◽  
Matthias Behrendt ◽  
Albert Albers

Many concepts for acoustic meta materials rely on additive manufacturing techniques. Depending on the production process and material of choice, different levels of precision and repeatability can be achieved. In addition, different materials have different mechanical properties, many of which are frequency dependent and cannot easily be measured directly. In this contribution the authors have designed different resonator elements, which have been manufactured utilizing Fused Filament Fabrication with ABSplus and PLA, as well as PolyJet Fabrication with VeroWhitePlus. All structures are computed in FEA to obtain the calculated Eigenfrequencies and mode shapes, with the respective literature values for each material. Furthermore, the dynamic behavior of multiple instances of each structure is measured utilizing a 3D-Laser-Scanning Vibrometer under shaker excitation, to obtain the actual Eigenfrequencies and mode shapes. The results are then analyzed in regards to variance between different print instances, and in regards to accordance between measured and calculated results. Based on previous work and this analysis the parameters of the FEA models are updated to improve the result quality.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1610 ◽  
Author(s):  
Paulo J. Morais ◽  
Bianca Gomes ◽  
Pedro Santos ◽  
Manuel Gomes ◽  
Rudolf Gradinger ◽  
...  

Ever-increasing demands of industrial manufacturing regarding mechanical properties require the development of novel alloys designed towards the respective manufacturing process. Here, we consider wire arc additive manufacturing. To this end, Al alloys with additions of Zn, Mg and Cu have been designed considering the requirements of good mechanical properties and limited hot cracking susceptibility. The samples were produced using the cold metal transfer pulse advanced (CMT-PADV) technique, known for its ability to produce lower porosity parts with smaller grain size. After material simulations to determine the optimal heat treatment, the samples were solution heat treated, quenched and aged to enhance their mechanical performance. Chemical analysis, mechanical properties and microstructure evolution were evaluated using optical light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence analysis and X-ray radiography, as well as tensile, fatigue and hardness tests. The objective of this research was to evaluate in detail the mechanical properties and microstructure of the newly designed high-performance Al–Zn-based alloy before and after ageing heat treatment. The only defects found in the parts built under optimised conditions were small dispersed porosities, without any visible cracks or lack of fusion. Furthermore, the mechanical properties are superior to those of commercial 7xxx alloys and remarkably independent of the testing direction (parallel or perpendicular to the deposit beads). The presented analyses are very promising regarding additive manufacturing of high-strength aluminium alloys.


Author(s):  
Xiaoqing Wang ◽  
Xibing Gong ◽  
Kevin Chou

This study presents a thorough literature review on the powder-bed laser additive manufacturing processes such as selective laser melting (SLM) of Inconel 718 parts. The paper first introduces the general aspects of powder-bed laser additive manufacturing and then discusses the unique characteristics and advantages of SLM. Moreover, the bulk of this study includes extensive discussions of microstructures and mechanical properties, together with the application ranges, of Inconel 718 parts fabricated by SLM.


2012 ◽  
Vol 504-506 ◽  
pp. 679-684 ◽  
Author(s):  
Ivaylo N. Vladimirov ◽  
Michael P. Pietryga ◽  
Vivian Tini ◽  
Stefanie Reese

In this work, we discuss a finite strain material model for evolving elastic and plastic anisotropy combining nonlinear isotropic and kinematic hardening. The evolution of elastic anisotropy is described by representing the Helmholtz free energy as a function of a family of evolving structure tensors. In addition, plastic anisotropy is modelled via the dependence of the yield surface on the same family of structure tensors. Exploiting the dissipation inequality leads to the interesting result that all tensor-valued internal variables are symmetric. Thus, the integration of the evolution equations can be efficiently performed by means of an algorithm that automatically retains the symmetry of the internal variables in every time step. The material model has been implemented as a user material subroutine UMAT into the commercial finite element software ABAQUS/Standard and has been used for the simulation of the phenomenon of earing during cylindrical deep drawing.


2018 ◽  
Vol 52 (23) ◽  
pp. 3173-3181 ◽  
Author(s):  
Kuldeep Agarwal ◽  
Suresh K Kuchipudi ◽  
Benoit Girard ◽  
Matthew Houser

Fiber reinforced polymer composites have been around for many decades but recently their use has started to increase in multiple industries such as automotive, aerospace, and construction. The conventional composite manufacturing processes such as wet lay-up, resin transfer molding, automatic lay ups etc. suffer from a lot of practical and material issues which have limited their use. The mechanical properties of the parts produced by such processes also suffer from variation that causes problems downstream. Composites based additive manufacturing processes such as Fused Deposition Modeling and Composite Filament Fabrication are trying to remove some of the barriers to the use of composites. Additive manufacturing processes offer more design and material freedom than conventional composite manufacturing processes. This paper compares conventional composite processes for the manufacturing of Epoxy-Fiberglass fiber reinforced polymers with composite filament fabrication based Nylon-Fiberglass fiber reinforced polymers. Mechanical properties such as tensile strength, elastic modulus, and fatigue life are compared for the different processes. The effect of process parameters on these mechanical properties for the composite filament fabrication based process is also examined in this work. It is found that the composite filament fabrication based process is very versatile and the parts manufactured by this process can be used in various applications.


Author(s):  
Benjamin Graybill ◽  
Ming Li ◽  
David Malawey ◽  
Chao Ma ◽  
Juan-Manuel Alvarado-Orozco ◽  
...  

Additive manufacturing enables the design of components with intricate geometries that can be manufactured with lead times much shorter when compared with conventional manufacturing. The ability to manufacture components out of high-performance metals through additive manufacturing technologies attracts industries that wish to develop more complex parts, but require components to maintain their structural integrity in demanding operating environments. Nickel-based superalloys are of particular interest due to their excellent mechanical, creep, wear, and oxidation properties at both ambient and elevated temperatures. However, relationship between process parameters and the resulting microstructure is still not well understood. The control of the microstructure, in particular the precipitation of secondary phases, is of critical importance to the performance of nickel-based superalloys. This paper reviews the additive manufacturing methods used to process nickel-based superalloys, the influence of the process parameters on microstructure and mechanical properties, the effectiveness of various heat treatment regimens, and the addition of particles in order to further improve mechanical properties.


MRS Advances ◽  
2016 ◽  
Vol 1 (24) ◽  
pp. 1791-1796 ◽  
Author(s):  
Alireza Ebrahimi ◽  
Thomas Hochrainer

ABSTRACTA persistent challenge in multi-scale modeling of materials is the prediction of plastic materials behavior based on the evolution of the dislocation state. An important step towards a dislocation based continuum description was recently achieved with the so called continuum dislocation dynamics (CDD). CDD captures the kinematics of moving curved dislocations in flux-type evolution equations for dislocation density variables, coupled to the stress field via average dislocation velocity-laws based on the Peach-Koehler force. The lowest order closure of CDD employs three internal variables per slip system, namely the total dislocation density, the classical dislocation density tensor and a so called curvature density.In the current work we present a three-dimensional implementation of the lowest order CDD theory as a materials sub-routine for Abaqus®in conjunction with the crystal plasticity framework DAMASK. We simulate bending of a micro-beam and qualitatively compare the plastic shear and the dislocation distribution on a given slip system to results from the literature. The CDD simulations reproduce a zone of reduced plastic shear close to the surfaces and dislocation pile-ups towards the center of the beam, which have been similarly observed in discrete dislocation simulations.


Sign in / Sign up

Export Citation Format

Share Document