scholarly journals Dynamic regulation of translation quality control associated with ribosome stalling

Author(s):  
Daniel Goldman
Author(s):  
Daniel H. Goldman ◽  
Nathan M. Livingston ◽  
Jonathan Movsik ◽  
Bin Wu ◽  
Rachel Green

AbstractTranslation of problematic mRNA sequences induces ribosome stalling. Collided ribosomes at the stall site are recognized by cellular quality control machinery, resulting in dissociation of the ribosome from the mRNA and subsequent degradation of the nascent polypeptide and in some organisms, decay of the mRNA. However, the timing and regulation of these processes are unclear. We developed a SunTag-based reporter to monitor translation in real time on single mRNAs harboring difficult-to-translate poly(A) stretches. This reporter recapitulates previous findings in human cells that an internal poly(A) stretch reduces protein output ∼10-fold, while mRNA levels are relatively unaffected. Long-term imaging of translation indicates that poly(A)-containing mRNAs are robustly translated in the absence of detectable mRNA cleavage. However, quantification of ribosome density reveals a ∼3-fold increase in the number of ribosomes on poly(A)-containing mRNAs compared to a control mRNA, consistent with queues of many stalled ribosomes. Using single-molecule harringtonine runoff experiments, we observe the resolution of these queues in real-time by the cellular quality control machinery, and find that rescue is very slow compared to both elongation and termination. We propose that the very slow clearance of stalled ribosomes provides the basis for the cell to distinguish between transient and deleterious stalls, and that the human quality control apparatus predominantly targets the nascent protein rather than the mRNA.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paige B. Martin ◽  
Yu Kigoshi-Tansho ◽  
Roger B. Sher ◽  
Gianina Ravenscroft ◽  
Jennifer E. Stauffer ◽  
...  

Abstract A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway—Ribosome-associated Quality Control (RQC)—by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF’s role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration.


2020 ◽  
Vol 117 (8) ◽  
pp. 4099-4108 ◽  
Author(s):  
Débora Broch Trentini ◽  
Matteo Pecoraro ◽  
Shivani Tiwary ◽  
Jürgen Cox ◽  
Matthias Mann ◽  
...  

Mammalian cells present a fingerprint of their proteome to the adaptive immune system through the display of endogenous peptides on MHC-I complexes. MHC-I−bound peptides originate from protein degradation by the proteasome, suggesting that stably folded, long-lived proteins could evade monitoring. Here, we investigate the role in antigen presentation of the ribosome-associated quality control (RQC) pathway for the degradation of nascent polypeptides that are encoded by defective messenger RNAs and undergo stalling at the ribosome during translation. We find that degradation of model proteins by RQC results in efficient MHC-I presentation, independent of their intrinsic folding properties. Quantitative profiling of MHC-I peptides in wild-type and RQC-deficient cells by mass spectrometry showed that RQC substantially contributes to the composition of the immunopeptidome. Our results also identify endogenous substrates of the RQC pathway in human cells and provide insight into common principles causing ribosome stalling under physiological conditions.


iScience ◽  
2021 ◽  
pp. 102985
Author(s):  
Raul Burgos ◽  
Marc Weber ◽  
Carolina Gallo ◽  
Maria Lluch-Senar ◽  
Luis Serrano

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Santosh Kumar Kuncha ◽  
Vinitha Lakshmi Venkadasamy ◽  
Gurumoorthy Amudhan ◽  
Priyanka Dahate ◽  
Sankara Rao Kola ◽  
...  

The emergence of multicellularity in Animalia is associated with increase in ROS and expansion of tRNA-isodecoders. tRNA expansion leads to misselection resulting in a critical error of L-Ala mischarged onto tRNAThr, which is proofread by Animalia-specific-tRNA Deacylase (ATD) in vitro. Here we show that in addition to ATD, threonyl-tRNA synthetase (ThrRS) can clear the error in cellular scenario. This two-tier functional redundancy for translation quality control breaks down during oxidative stress, wherein ThrRS is rendered inactive. Therefore, ATD knockout cells display pronounced sensitivity through increased mistranslation of threonine codons leading to cell death. Strikingly, we identify the emergence of ATD along with the error inducing tRNA species starting from Choanoflagellates thus uncovering an important genomic innovation required for multicellularity that occurred in unicellular ancestors of animals. The study further provides a plausible regulatory mechanism wherein the cellular fate of tRNAs can be switched from protein biosynthesis to non-canonical functions.


2019 ◽  
Author(s):  
Surya D. Aggarwal ◽  
Saigopalakrishna S. Yerneni ◽  
Ana Rita Narciso ◽  
Sergio R. Filipe ◽  
N. Luisa Hiller

ABSTRACTTo ensure survival during colonization of the human host, bacteria must successfully respond to unfavorable and fluctuating conditions. This study explores the fundamental phenomenon of stress response in a gram-positive bacterium, where we investigate the ability of a cell wall modification enzyme to modulate intracellular stress and prevent the triggering of the stringent response pathway. TheStreptococcus pneumoniaecell wall modification proteins MurM and MurN are tRNA-dependent amino acid ligases, which lead to the production of branched muropeptides by generating peptide crossbridges. In addition, MurM has been proposed to contribute to translation quality control by preferentially deacylating mischarged tRNAs mischarged with amino acids that make up the peptidoglycan. Here, we demonstrate that themurMNoperon promotes optimal growth under stressed conditions. Specifically, when grown in mildly acidic conditions, amurMNdeletion mutant displays early entry into stationary phase and dramatically increased lysis. Surprisingly, these defects are rescued by inhibition of the stringent response pathway or by enhancement of the cell’s ability to deacylate mischarged tRNA molecules. The increase in lysis results from the activity of LytA, and experiments in macrophages reveal thatmurMNregulates phagocytosis in a LytA-dependent manner. These results suggest that under certain stresses, these bacterial cells lacking MurMN likely accumulate mischarged tRNA molecules, activate the stringent response pathway, and enter prematurely into stationary phase. Moreover, by virtue of its ability to deacylate mischarged tRNAs while building peptidoglycan crossbridges, MurM can calibrate the stress response with consequences to host-pathogen interactions. Thus, MurM is positioned at the interface of cell wall modification, translation quality control and stringent response. These findings expand our understanding of the functions of the bacterial cell wall: cell wall modifications that impart structural rigidity to the cell are interlinked to the cell’s ability to signal intracellularly and mount a response to environmental stresses.SIGNIFICANCEDuring infection, microbes must survive the hostile environmental conditions of the human host. When exposed to stresses, bacteria activate an intracellular response, known as stringent response pathway, to ensure their survival. This study connects two fundamental pathways important for cellular growth in a gram-positive bacterium; it demonstrates that enzymes responsible for cell wall modification are connected to the stringent response pathway via their ability to ameliorate errors in protein translation. Our study was performed onStreptococcus pneumoniaewhere the cell wall modification enzyme, MurM, is a known determinant of penicillin resistance. We now demonstrate the importance of MurM in translation quality control and establish that it serves as a gatekeeper of the stringent response pathway.


Plants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 109 ◽  
Author(s):  
Laetitia Poidevin ◽  
Dilek Unal ◽  
Borja Belda-Palazón ◽  
Alejandro Ferrando

Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways.


2016 ◽  
Vol 113 (8) ◽  
pp. 2252-2257 ◽  
Author(s):  
Tammy J. Bullwinkle ◽  
Michael Ibba

Gene expression relies on quality control for accurate transmission of genetic information. One mechanism that prevents amino acid misincorporation errors during translation is editing of misacylated tRNAs by aminoacyl-tRNA synthetases. In the absence of editing, growth is limited upon exposure to excess noncognate amino acid substrates and other stresses, but whether these physiological effects result solely from mistranslation remains unclear. To explore if translation quality control influences cellular processes other than protein synthesis, an Escherichia coli strain defective in Tyr-tRNAPhe editing was used. In the absence of editing, cellular levels of aminoacylated tRNAPhe were elevated during amino acid stress, whereas in the wild-type strain these levels declined under the same growth conditions. In the editing-defective strain, increased levels of aminoacylated tRNAPhe led to continued synthesis of the PheL leader peptide and attenuation of pheA transcription under amino acid stress. Consequently, in the absence of editing, activation of the phenylalanine biosynthetic operon becomes less responsive to phenylalanine limitation. In addition to raising aminoacylated tRNA levels, the absence of editing lowered the amount of deacylated tRNAPhe in the cell. This reduction in deacylated tRNA was accompanied by decreased synthesis of the second messenger guanosine tetraphosphate and limited induction of stringent response-dependent gene expression in editing-defective cells during amino acid stress. These data show that a single quality-control mechanism, the editing of misacylated aminoacyl-tRNAs, provides a critical checkpoint both for maintaining the accuracy of translation and for determining the sensitivity of transcriptional responses to amino acid stress.


2010 ◽  
Vol 107 (9) ◽  
pp. 4063-4068 ◽  
Author(s):  
N. M. Reynolds ◽  
J. Ling ◽  
H. Roy ◽  
R. Banerjee ◽  
S. E. Repasky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document