scholarly journals ANALISA SIFAT MEKANIK PENGARUH VARIASI PERENDAMAN DAN PENEKANAN PADA KOMPOSIT BERBAHAN SERAT BUNDUNG

ELKHA ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Sutrisno Sutrisno ◽  
Azmal Azmal

This study aims to determine the effect of mechanical properties of impact, bending and tensile of bundle fiber composites with 5% NaOH variation of immersion time 0.5 hours, 1 hour and 1.5 hours. Then the blending and casting process is carried out to form a composite material with 20% fiber and 80% resin binder with a catalyst content of 1% and pressurized with press variations of 5 kg, 10 kg and 15 kg. The results of the blending and casting process are made according to the testing standard and then testing the mechanical properties. Impact, bending and tensile strength test results showed that immersion of 0.5 hours with 15 Kg concentration produced the highest value, namely Impact strength 94.89 J / mm2, bending strength 17.77 N / mm2 and tensile strength 27 N / mm2. Whereas the fracture form of the composite is the binding and fiber breaking evenly at the same point and the fiber is not pulled from the metric.

2017 ◽  
Vol 726 ◽  
pp. 490-494
Author(s):  
Zhu Ding ◽  
Can Lu ◽  
Peng Cui ◽  
Wei Ting Xu

A novel inorganic matrix for fiber composites prepared from phosphate based geopolymer (PBG) was synthesized at ambient temperature. The mechanical property of PBG paste and the carbon fiber reinforced PBG composite was determined. Test results showed that the compressive strength of PBG paste at the age of 28 days was found to be 33.67 MPa. Moreover, the carbon fiber sheets enhanced the bending strength and ductility of PBG paste by up to 1300% and 307% respectively. Finally, the strengthening effect of this new composite on concrete beam was evaluated. The carbon fiber PBG composite applied on the bottom surface of concrete beam increased the bending strength by 183%. Therefore, it is concluded that PBG can be a promising inorganic matrix that can be used to strengthen deteriorated concrete structures.


2011 ◽  
Vol 331 ◽  
pp. 699-702
Author(s):  
Li Hua Lv ◽  
Guang Jian Wan ◽  
Yong Ling Yu

For the waste polyester/cotton/hemp blend fiber of largest abandoned number,this paper designed and optimized the molding technology of manufacturing waste blend waste composites by mixed hotpressing,and analyzed the mechanical properties of composites. Through the orthogonality experiment,the optimum conditions were given as follows:the ratio of waste blend fabrics 1:1,the Concentration of PP 60%,the temperature of hotpressing 185°C,the hotpressing pressure 12Mpa, the hotpressing time 5min. Under above conditions,the composites had the density 0.9326g/cm2,the tensile strength 45.37Mpa, the bending strength 48.31Mpa and the energy absorption of impact 15.32 KJ/m2.


2015 ◽  
Vol 749 ◽  
pp. 278-281
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jin Mao Chen ◽  
Wen Hao Hsing ◽  
Hsueh Jen Tan ◽  
...  

Geotextiles are made of polymers, and their conjunction with different processes and materials can provide geotextiles with desirable characteristics and functions, such as filtration, separation, and drainage, and thereby meets the environmental requirements. Chemical resistant and mechanical strong polymers, including polyester (PET) and polypropylene (PP), are thus used to prolong the service life of the products made by such materials. This study proposes highly air permeable geotextiles that are made with different thicknesses and various needle punching speeds, and the influences of these two variables over the pore structure and mechanical properties are then examined. PET fibers, PP fibers, and recycled Kevlar fibers are blended, followed by being needle punched with differing spaces and speeds to form geotextiles with various thicknesses and porosities. The textiles are then evaluated for their mechanical strength and porosity. The test results show that a thickness of 4.5 cm and 1.5 cm demonstrate an influence on the tensile strength of the geotextiles, which is ascribed to the webs that are incompletely needle punched. However, the excessive needle punching speed corresponding to a thickness of 0.2 cm results in a decrease in tensile strength, but there is also an increase in the porosity of the geotextiles.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


Author(s):  
M.A.P Handana ◽  
◽  
Besman Surbakti ◽  
Rahmi Karolina ◽  
◽  
...  

The use of borax solution as a preservative in wood and bamboo materials is well known in the community. A borax solution is an environmentally friendly liquid that can dissolve in water, so it is suitable to be used as a preservative within cold or hot soaking techniques. The ability of borax to resist insects and fungus attacks on bamboo has been proven, but the effect of the solution on the strength of bamboo must also be investigated. This study conducts to investigate the effects of borax and its additives as preservative solutions to the mechanical properties of bamboos. The bamboos preservations were conducted by cold conditions of immersion, while the mechanical properties were performed to understand the effects of preservatives. The result of this study indicated that 30% to 50% borax in the preservative solution is sufficient to provide significant increase in strength for compressive strength, tensile strength, and bending strength of bamboo specimen. From this study, the use of borax solution in preserving the bamboos materials improved the quality of bamboos based on its mechanical properties.


2019 ◽  
Vol 27 (4(136)) ◽  
pp. 88-93
Author(s):  
K.Z.M. Abdul Motaleb ◽  
Md Shariful Islam ◽  
Rimvydas Milašius

Two types of composites:(1) pineapple fabric reinforced polyester resin (Pineapple/PR) and (2) jute fabric reinforced polyester resin (Jute/PR) were prepared and the mechanical properties investigated for various gamma radiation doses ranging from 100-500 krad. Properties like tensile strength, Young’s modulus, elongation-at-break, bending strength, bending modulus and impact strength were increased significantly by 19%, 32%, 45%, 32%, 47% and 20%, respectively, at a dose of 300 krad for Pineapple/PR, and by 47%, 49%, 42%, 45%, 52% and 65%, respectively, at a dose of 200 krad for the Jute/PR composite in comparison to the non-irradiated composite. Gamma radiation improved the mechanical properties, but overdoses of radiation even caused a reduction in them.


2019 ◽  
Vol 1 (1) ◽  
pp. 38-48
Author(s):  
A. Sathishkumar ◽  
Gowtham A ◽  
M. Jeyasuriya ◽  
S. DineshBabu

Aluminum alloy is widely used in automotive, aerospace and other engineering industries because of its excellent mechanical properties. The main objective is to enhance 6061 Al alloy’s mechanical properties by producing 6061-B4C composite through squeeze casting process. Experimentation was carried out with different micron sizes and weight fraction of B4C particles. The mechanical properties of reinforced metal matrix were experimentally investigated in terms of Ultimate Tensile Strength and Hardness. We observe that these two properties are improved by the reinforcement of B4C particles and applied squeeze pressure.


2019 ◽  
Vol 130 ◽  
pp. 01005
Author(s):  
Cindy Retno Putri ◽  
Anne Zulfia Syahrial ◽  
Salahuddin Yunus ◽  
Budi Wahyu Utomo

The goal of this research is to improve the mechanical properties such as strength, hardness and wear resistance for automotive application such as brake shoe and bearings due to high cycle, load and impact during their usage. Therefore, another alloying element or reinforcement addition is necessary. In this work, the composites are made by ADC 12 (Al-Si aluminum alloy) as the matrix and reinforced with micro SiC through stir casting process and TiB is added various from (0.04, 0.06, 0.15, 0.3 and 0.5) wt.% that act as grain refiners and 5 wt.% of Mg is added to improve the wettability of the composites. The addition of TiB improves the mechanical properties because the grain becomes finer and uniform, and the addition of Mg makes the matrix and reinforce have better adhesion. The results obtained that the optimum composition was found by adding 0.15 wt.% of TiB with tensile strength improve from 98 MPa to 136.3 MPa, hardness from 35 to 53 HRB and wear rate reduced from 0.006 2 mm3 s−1 to 0.002 3 mm3 s−1 respectively.


2013 ◽  
Vol 750-752 ◽  
pp. 687-690 ◽  
Author(s):  
Su Zhang ◽  
Gang Yang ◽  
Jian Hong Yi ◽  
Hong Yan

Effects of the holding time and the stirring time on the microstructure and mechanical properties of A356 alloy modified by Sc are researched. According to the test results, most of the eutectic silicon phases have changed to the shape of creeping point, dispersed in the grain boundary of α (Al) phase while stirring 1 minute, in which case both the tensile strength and elongation reach the highest, resulting in the best modification effect. The results also indicate that microstructure and mechanical properties of the alloy reach are the best modification effect when the melt is held 15 minute. It can be known that the optimal stirring time is 1 minute and the optimal holding time is 15 minute in the experiment condition of the work.


Sign in / Sign up

Export Citation Format

Share Document