scholarly journals Making Hydrogels Stronger through Hydrophilicity-Hydrophobicity Transformation, Thermoresponsive Morphomechanics and Crack Multifurcation

Author(s):  
YUBING HU ◽  
Lucile Barbier ◽  
Zhao Li ◽  
Xiaofan Ji ◽  
Heiva Le Blay ◽  
...  

<p>The development of mechanically strong, flexible and crack-resistant hydrogels is of great academic and practical significance and demands for the biomimetic exploration of energy dissipation pathways. The rational design of strong hydrogels is also limited by insufficient mechanism study, resulting from the lack of powerful technique to “see” hydrogels at morphological level. Herein, we constructed a thermoresponsive mechanically strong hydrogel from poly(<i>N</i>-isopropylacrylamide) (PNIPAM) and poly(<i>N</i>,<i>N</i>-dimethylacrylamide). Its hydrophilicity-hydrophobicity transformation and composition-dependent microphase separation are directly visualized by using luminogens with aggregation-induced emission as fluorescent indicators. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, thermoresponsive strengthened mechanical properties are attributed to the entanglement of PNIPAM chains and the formation of multiple noncovalent interactions, mainly hydrogen bonds. The enhanced fracture energy by crack multifurcation is related to the disruption of weak interfaces between two separated phases.</p>

2020 ◽  
Author(s):  
YUBING HU ◽  
Lucile Barbier ◽  
Zhao Li ◽  
Xiaofan Ji ◽  
Heiva Le Blay ◽  
...  

<p>The development of mechanically strong, flexible and crack-resistant hydrogels is of great academic and practical significance and demands for the biomimetic exploration of energy dissipation pathways. The rational design of strong hydrogels is also limited by insufficient mechanism study, resulting from the lack of powerful technique to “see” hydrogels at morphological level. Herein, we constructed a thermoresponsive mechanically strong hydrogel from poly(<i>N</i>-isopropylacrylamide) (PNIPAM) and poly(<i>N</i>,<i>N</i>-dimethylacrylamide). Its hydrophilicity-hydrophobicity transformation and composition-dependent microphase separation are directly visualized by using luminogens with aggregation-induced emission as fluorescent indicators. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, thermoresponsive strengthened mechanical properties are attributed to the entanglement of PNIPAM chains and the formation of multiple noncovalent interactions, mainly hydrogen bonds. The enhanced fracture energy by crack multifurcation is related to the disruption of weak interfaces between two separated phases.</p>


2012 ◽  
Vol 512-515 ◽  
pp. 2127-2130
Author(s):  
Li Huo ◽  
Cai Xia Dong

The mechanical properties were investigated of a series of PA-PEG thermalplastic elastomer based on PA1010 and polytetramethylene glycol (PEG) with varying hard and soft segment content. Dynamic mechanical measurements of these polymers have carried out over a wide range of temperatures. The block copolymers exhibit three peaks, designated as α, β and γ in the tanδ-temperature curve. The α transition shifts to higher temperature with increasing hard block molecular weight. However, at a constant hard molecular weight, the α transition shifts to higher temperature and the damping increases on increasing the soft segment molecular weight. DMA results show that the block copolymers exhibit a microphase separation structure and both soft and hard segments were found to be crystallizable. The degree of phase separation increases with increasing hard block molecular weight.


2018 ◽  
Author(s):  
S. Girardo ◽  
N. Träber ◽  
K. Wagner ◽  
G. Cojoc ◽  
C. Herold ◽  
...  

ABSTRACTCell mechanical measurements are gaining increasing interest in biological and biomedical studies. However, there are no standardized calibration particles available that permit the cross-comparison of different measurement techniques operating at different stresses and time-scales. Here we present the rational design, production, and comprehensive characterization of poly-acylamide (PAAm) microgel beads mimicking biological cells. We produced mono-disperse beads at rates of 20 – 60 kHz by means of a microfluidic droplet generator, where the pre-gel composition was adjusted to tune the beads’ elasticity in the range of cell and tissue relevant mechanical properties. We verified bead homogeneity by optical diffraction tomography and Brillouin microscopy. Consistent elastic behavior of microgel beads at different shear rates was confirmed by AFM-enabled nanoindentation and real-time deformability cytometry (RT-DC). The remaining inherent variability in elastic modulus was rationalized using polymer theory and effectively reduced by sorting based on forward-scattering using conventional flow cytometry. Our results show that PAAm microgel beads can be standardized as mechanical probes, to serve not only for validation and calibration of cell mechanical measurements, but also as cell-scale stress sensors.Significance StatementOften vastly different cell mechanical properties are reported even for the same cell type when employing different measurement techniques. This discrepancy shows the urgent need for standardized calibration particles to cross-compare and validate techniques. Microgel beads can serve this purpose, but they have to fulfil specific requirements such as homogeneity, sizes and elasticities in the range of the cells, and they have to provide comparable results independent of the method applied. Here we demonstrate the standardized production of polyacrylamide microgel beads with all the features an elastic cell-mimic should have. These can not only be used as method calibration particles, but can also serve as cell-scale sensors to quantify normal and shear stresses exerted by other cells and inside tissues, enabling many new applications.


2019 ◽  
Vol 968 ◽  
pp. 96-106
Author(s):  
Oleksandr Pshinko ◽  
Olena Hromova ◽  
Dmytro Rudenko

Study of rheological properties of concrete mixtures based on modified cement systems in order to determine process parameters. Methodology. To study structural-mechanical properties of modified concrete mixtures of different consistency at their horizontal vibrating displacement an oscillatory viscometer was designed. Results. The optimization of the process of vibration displacement of concrete mixtures with the specification of parameters of vibration impacts taking into account structural-mechanical properties of the mixture is performed. It has been established that the viscosity of the modified cement system of the concrete mixture is a variable quantity, which depends on the parameters of the vibration impacts. Scientific novelty. The mechanism of interaction of the modified concrete mixture with the form and the table vibrator during its vibration compaction is determined. On the basis of this, a model of concrete laying process control is proposed, that allows to predict the ability to form a dense concrete structure. Practical significance. Disclosed physical nature of the process of vibrating displacement of modified concrete mixtures using the principles of physical-chemical mechanics of concrete allows reasonably choose the best options for vibration impacts.


2020 ◽  
Vol 22 (1) ◽  
pp. 105
Author(s):  
Wanting Li ◽  
Zixuan Huang ◽  
Rui Cai ◽  
Wan Yang ◽  
Huawei He ◽  
...  

Silver-based hybrid nanomaterials are receiving increasing attention as potential alternatives for traditional antimicrobial agents. Here, we proposed a simple and eco-friendly strategy to efficiently assemble zinc oxide nanoparticles (ZnO) and silver nanoparticles (AgNPs) on sericin-agarose composite film to impart superior antimicrobial activity. Based on a layer-by-layer self-assembly strategy, AgNPs and ZnO were immobilized on sericin-agarose films using the adhesion property of polydopamine. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction spectroscopy were used to show the morphology of AgNPs and ZnO on the surface of the composite film and analyze the composition and structure of AgNPs and ZnO, respectively. Water contact angle, swelling ratio, and mechanical property were determined to characterize the hydrophilicity, water absorption ability, and mechanical properties of the composite films. In addition, the antibacterial activity of the composite film was evaluated against Gram-positive and Gram-negative bacteria. The results showed that the composite film not only has desirable hydrophilicity, high water absorption ability, and favorable mechanical properties but also exhibits excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria. It has shown great potential as a novel antimicrobial biomaterial for wound dressing, artificial skin, and tissue engineering.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Bo Zhang ◽  
Sizhi Zeng ◽  
Fenghua Tang ◽  
Shujun Hu ◽  
Qiang Zhou ◽  
...  

As a stimulus-sensitive material, the difference in composition, fabrication process, and influencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire with a 1 mm diameter and special element composition were tested under multi-working conditions, which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical results with the improved model of Graesser’s theory was verified by a comparison to the experimental results. The experimental results show that the number of cycles has no significant effect on the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the loading rate increasing, the pinch effect of the hysteresis curves will be enlarged, while the effective elastic modulus and slope of the transformation stresses in the process of loading and unloading are also increased, and the maximum energy dissipation capacity of the SMA wires appears at a loading rate of 0.675 mm/s. Moreover, with the initial strain increasing, the slope of the transformation stresses in the process of loading is increased, while the effective elastic modulus and slope of the transformation stresses in the process of unloading are decreased, and the maximum energy dissipation capacity appears at the initial strain of 0.0075. In addition, a good agreement between the test and numerical results is obtained by comparing with the hysteresis curves and energy dissipation values, so the numerical model is useful to predict the stress–strain relations at different stages. The test and numerical results will also provide a basis for the design of corresponding self-centering steel dampers.


Author(s):  
Amany Micheal ◽  
Yehia Bahei-El-Din ◽  
Mahmoud E. Abd El-Latief

Abstract When inevitable, failure in composite laminates is preferred to occur gracefully to avoid loss of property and possibly life. While the inherent inhomogeneity leads to slow dissipation of damage-related energy, overall failure is fiber-dominated and occurs in a rather brittle manner. Multidirectional plies usually give a more ductile response. Additionally, stiffness and strength as well as cost are important factors to consider in designing composite laminates. It is hence desirable to optimize for high mechanical properties and low cost while keeping graceful failure. Designing composite laminates with hybrid systems and layups, which permit gradual damage energy dissipation, are two ways proposed in this work to optimize for mechanical properties while avoiding catastrophic failure. In the hybrid system design, combining the less expensive glass reinforced plies with carbon reinforced plies offers a cost-effective product, marginal mechanical properties change and ductile profile upon failure. Hybrid glass/carbon composite laminates subjected to three-point bending showed strain to failure which is double that measured for carbon composite specimens, without affecting the ultimate load. Energy dissipation mechanisms were also created by building laminates which were intentionally made discontinuous by introducing cuts in the fibers of the interior plies. This created a longer path for damage before cutting through the next ply resulting in double failure strain with marginal reduction in load. The effect of fiber discontinuity in terms of spacing and distribution are among the factors considered.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tian-Feng Yuan ◽  
Jin-Young Lee ◽  
Kyung-Hwan Min ◽  
Young-Soo Yoon

This paper presents experimental investigations on the mechanical properties of no-slump high-strength concrete (NSHSC), such as the compressive and flexural strength. First, to determine the proper NSHSC mixtures, the compressive and flexural strength of three different water-to-binder ratios (w/b) of specimens with and without polyethylene (PE) fiber was tested at test ages. Then, the effect of hybrid combinations of PE fiber and steel fiber (SF) on the compressive strength, flexural strength, flexural toughness, and flexural energy dissipation capacity was experimentally investigated. Furthermore, the various hybrid fiber-reinforced NSHSCs were evaluated, and their synergy was calculated, after deriving the benefits from each of the individual fibers to exhibit a synergetic response. The test results indicate that a w/b of 16.8% with or without fibers had lower strength and flexural strength (toughness) than those of other mixtures (w/b of 16.4% and 17.2%). Specimens with a hybrid of SF and short PE fibers exhibited a higher compressive and flexural strength, flexural toughness, energy dissipation capacity, and fiber synergy in all considered instances.


2019 ◽  
Vol 944 ◽  
pp. 509-514 ◽  
Author(s):  
Shan Shan Liu ◽  
He Yi Ge ◽  
Yu Zou ◽  
Juan Chen

Maleic anhydride grafted polypropylene compatibilizer (MAPP) and chitosan (CS) were mixed and used as a compound coupling agent to modify the PP matrix. 5 wt% NaOH and 10 wt% NaOH aqueous solution were used to treat corn stalk fiber (CSF), respectively. The effect of the complex coupling agent and the alkali treatment on the mechanical properties of CSF/PP composite was investigated. Morphological observation of the fracture surfaces was accepted to confirm CSF dispersion and wetting with the help of SEM. The results of the water absorption further demonstrated the binding of the interface between the CSF and the PP matrix. The wetting of the CSF in the PP was improved with the addition of the complex compatibilizer (5% MAPP + 5% CS). The formation of chemical bonding between the fiber and the matrix resulted in enhancing the interfacial compatibility between them. Compared with the pure PP, the flexural strength of 15-UT-5MAPPCS (63.14 MPa) and 15-UT-5MAPPCS (69.35 MPa) increased by 22.5% and 34.5%, respectively. The complex compatibilizer can replace alkaline treatment process to improve the mechanical properties of the composite.


Sign in / Sign up

Export Citation Format

Share Document