scholarly journals Structural Composition Explains Differences in Stretchability for Compression-Molded Arabinoxylan-Based Thermoplastic Films

Author(s):  
Parveen Kumar Deralia ◽  
Amit Kumar Sonker ◽  
Anja Lund ◽  
Anette Larsson ◽  
Anna Ström ◽  
...  

<div><div><div><p>Valorization of argi-waste polymers into value-added materials is essential for sustainable development of polymeric industry. Reported herein is a 1-step and 2-step strategy for fabrication of flexible and stretchable thermoplastics prepared by compression molding from two structurally different arabinoxylans (AX). The synthesis was accomplished using n-butyl glycidyl ether whose epoxide ring opened on hydroxyl group and resulted in introduction of alkoxide sidechains for the 1-step synthesis. AX was preactivated by periodate oxidation as 1st step for the 2-step synthesis. Two structurally different AXs, i.e. wheat bran extracted arabinoxylan (AXWB, araf/xylp=3/4) and barley husk extracted arabinoxylan (AXBH, araf/xylp=1/4) were used to understand the effects of the araf/xylp on thermoplastic properties because melt processability has been rare for low araf/xylp AXs. AXBH-derived samples demonstrated melt compression processability. AXWB and AXBH derived thermoplastics featured dual and single glass transition (Tg) characteristics respectively as confirmed by DSC and DMA, but AXBH derived thermoplastics had lower stretchability (maximum 160%) compared to AXWB samples (maximum 300 %). Higher araf/xylp and thus in turn longer alkoxide side chains in AXWB derived thermoplastics explained differences in stretchability.</p></div></div></div>

2020 ◽  
Author(s):  
Parveen Kumar Deralia ◽  
Amit Kumar Sonker ◽  
Anja Lund ◽  
Anette Larsson ◽  
Anna Ström ◽  
...  

<div><div><div><p>Valorization of argi-waste polymers into value-added materials is essential for sustainable development of polymeric industry. Reported herein is a 1-step and 2-step strategy for fabrication of flexible and stretchable thermoplastics prepared by compression molding from two structurally different arabinoxylans (AX). The synthesis was accomplished using n-butyl glycidyl ether whose epoxide ring opened on hydroxyl group and resulted in introduction of alkoxide sidechains for the 1-step synthesis. AX was preactivated by periodate oxidation as 1st step for the 2-step synthesis. Two structurally different AXs, i.e. wheat bran extracted arabinoxylan (AXWB, araf/xylp=3/4) and barley husk extracted arabinoxylan (AXBH, araf/xylp=1/4) were used to understand the effects of the araf/xylp on thermoplastic properties because melt processability has been rare for low araf/xylp AXs. AXBH-derived samples demonstrated melt compression processability. AXWB and AXBH derived thermoplastics featured dual and single glass transition (Tg) characteristics respectively as confirmed by DSC and DMA, but AXBH derived thermoplastics had lower stretchability (maximum 160%) compared to AXWB samples (maximum 300 %). Higher araf/xylp and thus in turn longer alkoxide side chains in AXWB derived thermoplastics explained differences in stretchability.</p></div></div></div>


2020 ◽  
Vol 13 ◽  
Author(s):  
Inbasekaran S. ◽  
G. Thiyagarajan ◽  
Ramesh C. Panda ◽  
S. Sankar

Background:: Chrome shavings, a bioactive material, are generated from tannery as waste material. These chrome shaving can be used for the preparation of many value-added products. Objective:: One such attempt is made to use these chrome shaving wastes as a composite bio-battery to produce DC voltage, an alternate green energy source and cleaner technology. Methods:: Chrome shavings are hydrolyzed to make collagen paste and mixed with the ferrous nanoparticles of Moringa oleifera leaves and Carbon nanoparticles of Onion peels to form electrolyte paste as base. Then, the electrolyte base was added to the aluminum paste and conducting gel, and mixed well to form composite material for bio-battery. Results:: The composite material of bio-battery has been characterized using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). Series and parallel circuit testing were done using Copper and Zinc electrodes or Carbon and Zinc electrodes as the battery terminals in the electrolyte paste. The surface area of these electrodes needs standardization from bench to pilot scale. The power generated, for an AA battery size, using a single bio-battery cell has produced a DC voltage of 1.5 V; current of 900 mA. Circuit testing on 1 ml of 80 well-cells connected in series has produced DC output of 18 V and 1100 mA whereas 48 V and 1500 mA were obtained from a series-parallel connection. Conclusion:: The glass transition temperature (Tg) of electrolyte of the bio-battery at 53°C indicates that, at this temperature, all the substances present in the bio-battery are well spread and contributing consistently to the electrolyte activity where Fe-C-Nano-Particles were able to form strong chemical bonds on the flanking hydroxyl group sites of the Collagen leading to reduced mobility of polymers and increase Tg. The results instigate promising trends for commercial exploitation of this composite for bio-battery production.


2021 ◽  
Vol 13 (5) ◽  
pp. 2484
Author(s):  
Chi-Hung Lo

Many industries are labor-intensive and energy- and resource-consuming. A sustainable development plan is necessary for the industries as industrial structures have been changing recently. Taiwan’s shoe industry also has experienced such changes and requires a sustainable product development plan for continuous development. Therefore, this study aims to propose a new method by introducing a model of sustainable product development to facilitate the sustainable development of the industry. By taking air-cushioned casual shoe production as an example, this study suggested the refined Kano quality model for exploring the product attributes that improved the customers’ satisfaction. The refined Kano model that was established with interviews and questionnaire surveys was effective to define the product attributes that contributed to satisfying the customers and understanding their perception of product attributes. In the air-cushioned casual shoe production, the model found function, design, innovation, marketing, and service to be important for manufacturers to develop products with limited. It also suggested the priority be put on the attributes of high value-added quality, key quality, and potential quality. The model helped manufacturers decide which product attributes they need to invest in and develop. The relation of product attributes and consumer satisfaction for a sustainable product development model was also found by using the refined Kano model. The result of this study is expected to apply to various industries for establishing an appropriate sustainable product development model.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Wenli Wang ◽  
Yichen Liu ◽  
Yue Wang ◽  
Longfei Liu ◽  
Changwei Hu

The thermal degradation of lignin for value-added fuels and chemicals is important for environment improvement and sustainable development. The impact of pretreatment and catalysis of Ni(NO3)2 on the pyrolysis behavior of organsolv lignin were studied in the present work. Samples were pyrolyzed at 500 ∘C with an upward fixed bed, and the characteristics of bio-oil were determined. After pretreatment by Ni(NO3)2, the yield of monophenols increased from 23.3 wt.% to 30.2 wt.% in “Ni-washed” and decreased slightly from 23.3 wt.% to 20.3 wt.% in “Ni-unwashed”. Meanwhile, the selective formation of vinyl-monophenols was promoted in “Ni-unwashed”, which indicated that the existence of nickel species promoted the dehydration of C-OH and breakage of C-C in pyrolysis. In comparison with “Water”, HHV of bio-oil derived from “Ni-unwashed” slightly increased from 27.94 mJ/kg to 28.46 mJ/kg, suggesting that the lowering of oxygen content in bio-oil is associated with improved quality. Furthermore, the content of H2 in gas products dramatically increased from 2.0% to 7.6% and 17.1%, respectively.


Author(s):  
Parveen Kumar Deralia ◽  
Aline Maire du Poset ◽  
Anja Lund ◽  
Anette Larsson ◽  
Anna Ström ◽  
...  

2010 ◽  
Vol 112 ◽  
pp. 63-72 ◽  
Author(s):  
Philippe Evon ◽  
Virginie VanDenBossche ◽  
Pierre-Yves Pontalier ◽  
Luc RIGAL

Biorefinery of sunflower whole plant can be realized using a twin-screw extruder. Thermo-mechanical fractionation and aqueous extraction are conducted simultaneously. A filter section is outfitted along the barrel to collect continuously an extract and a raffinate (cake meal). Oil yield obtained is 53%. Proteins are partly extracted at the same time, just as pectins and hemicelluloses. Protein yield is 46%. Cake meal is relatively moist (66% for the moisture content). It is first dried to make easier its conservation. It is largely composed of lignocellulosic fibres (59% of the dry matter) from depithed stalk. Lipid content is 13% of the dry matter or 35% of the oil in whole plant. Protein content is 7% of the dry matter or 45% of the proteins in whole plant. DSC measurements indicate that denaturation of proteins is almost complete in the cake meal. DMTA spectrum of its milled powder reveals a significant peak at high temperature (between 175 and 200°C). As already observed with industrial sunflower cake meal, it can be associated with the glass transition of proteins. As a mixture of fibres and proteins, the cake meal can be considered as a natural composite. It is successfully processed into biodegradable and value-added agromaterials by thermo-pressing. As for DMTA analysis, the glass transition of proteins in the cake meal is also observed with PVT analysis at around 180°C. It makes easier the choice of the best thermo-pressing conditions to produce panels with higher mechanical properties in bending. These properties increase simultaneously with temperature, pressure and time chosen for molding operation. The highest flexural strength at break (11.5 MPa) and the highest elastic modulus (2.22 GPa) are obtained for the next molding conditions: 200°C and 320 kgf/cm2 during 60 s. Drop angle measurements show that the corresponding panel is also the most resistant to water. No significant transition is observed inside this panel above 0°C and until 200°C with DMTA analysis. Proteins ensure the agromaterial cohesion without any phase change in this temperature range, and fibres entanglement also acts like reinforcement. This panel could be used as inter-layer sheets for pallets or for the manufacturing of biodegradable containers (composters, crates for vegetable gardening) by assembly of panels.


2012 ◽  
Vol 518-523 ◽  
pp. 29-33 ◽  
Author(s):  
Peng Fei Xiao ◽  
Toshio Mori ◽  
Ryuichiro Kondo

Although heptachlor epoxide is one of the most persistent organic pollutants (POPs) that cause serious environmental problems, there is very limited information of the biodegradation of heptachlor epoxide by microorganisms, and no systematic study on the metabolic products and pathway of endrin by microorganisms has been conducted. Wood-decay fungi can degrade a wide spectrum of recalcitrant organopollutants, including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated biphenyls (PCBs). In this study, 18 wood-decay fungi strains of genus Phlebia were investigated for their ability to degrade heptachlor epoxide, and Phlebia acanthocystis, Phlebia brevispora, Phlebia lindtneri and Phlebia aurea removed about 16, 16, 22 and 25% of heptachlor epoxide, respectively, after 14 days of incubation. Heptachlor diol and 1-hydroxy-2,3-epoxychlordene were detected in these fungal cultures as metabolites by gas chromatography and mass spectrometry (GC/MS), suggesting that the hydrolysis reaction in the epoxide ring and substitution of chlorine atom with hydroxyl group in C1 position occur in bioconversion of heptachlor epoxide by selected wood-decay fungi, respectively. This is the first report describing the metabolites of heptachlor epoxide by microorganisms.


2010 ◽  
Vol 34-35 ◽  
pp. 1165-1169 ◽  
Author(s):  
Yong Feng Li ◽  
Bao Gang Wang ◽  
Qi Liang Fu ◽  
Yi Xing Liu ◽  
Xiao Ying Dong

In order to improve the value-added applications of low-quality wood, a novel composite, wood-polymer composite, was fabricated by in-situ terpolymerization of MMA, VAc and St within wood porous structure. The structure of the composite and the reaction of monomers within wood were both analyzed by SEM and FTIR, and the mechanical properties were also evaluated. The SEM observation showed that the polymer mainly filled up wood pores, suggesting good polymerizating crafts. The FTIR results indicated that under the employed crafts, three monomers terpolymerized in wood porous structure, and grafted onto wood matrix through reaction of ester group from monomers and hydroxyl group from wood components, suggesting chemical combination between the two phases. The mechanical properties of the wood-polymer composite involving modulus of rupture, compressive strength, wearability and hardness were improved 69%, 68%, 36% and 210% over those of untreated wood, respectively. Such method seems to be an effective way to converting low-quality wood to high-quality wood.


2021 ◽  
Vol 129 ◽  
pp. 05007
Author(s):  
Miroslava Melichová ◽  
Natália Poláková ◽  
Mária Moresová ◽  
Anna Kocianová

Research background: Despite the fact, that green growth is one of the main goals of the European Union, a sufficient attention is still not given to it in conditions of Slovakia. The green growth represents compliance of the need to protect environment with economic development of society. So far, a comprehensive survey has not been carried out in Slovakia, which would focus on the issue of green growth and sustainable development in enterprises in the Slovak wood-processing industry. Purpose of the article: The aim of the presented paper is to identify key external and internal determinants preventing the implementation of green growth and sustainable development in enterprises in the Slovak wood-processing industry. Methods: Current information on the research issue was obtained through an empirical survey in the form of a questionnaire. Subsequently, the results were processed descriptively and graphically. Findings & Value added: The achieved results show that the key internal determinant preventing the implementation of green growth and sustainable development in enterprises in the Slovak wood processing industry is the orientation of production to the end of the production process in the context of environmental pollution. The enterprises consider insufficient state support to be the main external determinant.


Sign in / Sign up

Export Citation Format

Share Document