scholarly journals Kinetic and Thermodynamic Adsorption of Cr(VI) onto Dried Oscillatoria Splendida in Aqueous Solution

2018 ◽  
Vol 3 (4) ◽  
pp. 195
Author(s):  
Risfidian Mohadi ◽  
Doni Setiawan ◽  
Hilda Zulkifli

Kinetic and thermodynamic adsorption study of Cr(VI) ion in aqueous solutions by dried Oscillatoria Splendida biomass was investigated in the batch system. The Oscillatoria Splendida was isolated and cultured from algae swamp ecosystem in South Sumatera. The adsorption properties of Cr(VI) onto dried Oscillatoria Splendida biomass was studied by the influences of contact time, initial Cr(VI) ion concentration and temperature of reaction. The experimental results were the rate of adsorption followed the second-order kinetic model with the rate of reaction k2 is 0.00181 mg g-1 min-1 and the adsorption thermodynamic agree to the Langmuir’s model with amount of  Cr(VI) removed from aqueous solution increased with increasing  Cr(VI) concentration with the higher adsorption energy was 8.46 kJ/mol at 50 °C.

2009 ◽  
Vol 27 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Laura Bulgariu ◽  
Dumitru Bulgariu ◽  
Theodor Malutan ◽  
Matei Macoveanu

The adsorption of lead(II) ions from aqueous solution onto lignin was investigated in this study. Thus, the influence of the initial solution pH, the lignin dosage, the initial Pb(II) ion concentration and the contact time were investigated at room temperature (19 ± 0.5 °C) in a batch system. Adsorption equilibrium was approached within 30 min. The adsorption kinetic data could be well described by the pseudo-second-order kinetic model, while the equilibrium data were well fitted using the Langmuir isotherm model. A maximum adsorption capacity of 32.36 mg/g was observed. The results of this study indicate that lignin has the potential to become an effective and economical adsorbent for the removal of Pb(II) ions from industrial wastewaters.


2017 ◽  
Vol 4 (12) ◽  
pp. 170829 ◽  
Author(s):  
Yong Fu ◽  
Xiaoxu Xu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Qifan Chen ◽  
...  

A new composite absorbent with multifunctional and environmental-friendly structures was prepared using chitosan, diatomite and polyvinyl alcohol as the raw materials, and glutaraldehyde as a cross-linking agent. The structure and morphology of the composite absorbent, and its adsorption properties of Hg(II) in water were characterized with Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) measurements and ultraviolet–visible (UV–Vis) spectra. The effect of the pH value and contact time on the removal rate and absorbance of Hg(II) was discussed. The adsorption kinetic model and static adsorption isotherm and regeneration of the obtained composite absorbent were investigated. The results indicated that the removal of Hg(II) on the composite absorbent followed a rapid adsorption for 50 min, and was close to the adsorption saturation after 1 h, which is in accord with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. When the pH value, contact time and the mass of the composite absorbent was 3, 1 h and 100 mg, respectively, the removal rate of Hg(II) on the composite absorbent reached 77%, and the maximum adsorption capacity of Hg(II) reached 195.7 mg g −1 .


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


2013 ◽  
Vol 9 (1) ◽  
pp. 1822-1836
Author(s):  
Keon Sang Ryoo ◽  
Jong-Ha Choi ◽  
Yong Pyo Hong

The present study is to explore the possibility of utilizing granular activated charcoal (GAC) for the removal of total phosphorous (T-P) and total nitrogen (T-N) in aqueous solution. Batch adsorption studies were carried out to determine the influences of various factors like initial concentration, contact time and temperature. The adsorption data showed that GAC has a similar adsorption capacity for both T-N and T-P. The adsorption degree of T-N and T-P on GAC was highly concentration dependent. It was found that the adsorption capacity of GAC is quite favorable at a low concentration. At concentrations of 1.0 mg L-1 of T-P and 2.0 mg L-1 of T-N, approximately 97 % of adsorption was achieved by GAC. The equilibrium data were fitted well to the Langmuir isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher R2 compared with the pseudo-first-order and intra-particle kinetic model. The theoretical adsorption equilibrium qe,cal from pseudo-second-order kinetic model were relatively similar to the experimental adsorption equilibrium qe,exp. To evaluate the effect of thermodynamic parameters at different temperatures, the change in free energy ΔG, the enthalpy ΔH and the entropy ΔS were estimated. Except for adsorption of T-P at 278 K, the ΔG values obtained were all negative at the investigated temperatures. It indicates that the present adsorption system occurs spontaneously. The adsorption process of T-N by GAC was exothermic in nature, whereas T-P showed endothermic behavior. In addition, the positive values of ΔS imply that there was the increase in the randomness of adsorption of T-N and T-P at GAC-solution interface.  


2021 ◽  
Vol 16 (2) ◽  
pp. 436-443
Author(s):  
Sharmila Ramasamy ◽  
Anbarasu Kaliyaperumal ◽  
Thamilarasu Pommanaickar

Textile industries discharge wastewater containing various dyes including Crystal Violet dye. These dyes are very harmful for human beings, animals and plants. Therefore, the attempt is made for adsorption framework on elimination of crystal violet dye by using Cicca acida L. stem-activated carbon from aqueous solution carried out under various experimental methods and optimization conditions. Adsorption data modeled with Freundlich, Langmuir and Tempkin adsorption isotherms. Thermodynamic factors like as ∆Ho, ∆So and ∆Go were calculated, which indicated that the adsorption was spontaneous and endothermic nature. Based on kinetic study, pseudo-second order kinetic model was fit compared to the pseudo-first order kinetic model. The adsorbent has been characterized by SEM before and after adsorption of crystal violet dye solution.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4464
Author(s):  
Sidra Gran ◽  
Rukhsanda Aziz ◽  
Muhammad Tariq Rafiq ◽  
Maryam Abbasi ◽  
Abdul Qayyum ◽  
...  

This research aims to assess the efficiency of the synthesized corncob as a cost-effective and eco-friendly adsorbent for the removal of heavy metals. Therefore, to carry out the intended research project, initially, the corncob was doped with nanoparticles to increase its efficiency or adsorption capacity. The prepared adsorbent was evaluated for the adsorption of cadmium (Cd) and chromium (Cr) from aqueous media with the batch experiment method. Factors that affect the adsorption process are pH, initial concentration, contact time and adsorbent dose. The analysis of Cd and Cr was performed by using atomic absorption spectrometry (AAS), while the characterization of the adsorbent was performed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that there is a significant difference before and after corncob activation and doping with CeO2 nanoparticles. The maximum removal for both Cd and Cr was at a basic pH with a contact time of 60 min at 120 rpm, which is 95% for Cd and 88% for Cr, respectively. To analyze the experimental data, a pseudo-first-order kinetic model, pseudo-second-order kinetic model, and intra-particle diffusion model were used. The kinetic adsorption studies confirmed that the experimental data were best fitted with the pseudo-second-order kinetic model (R2 = 0.989) and intra-particle diffusion model (R2 = 0.979). This work demonstrates that the cerium oxide/corncob nanocomposite is an inexpensive and environmentally friendly adsorbent for the removal of Cd and Cr from wastewater.


2010 ◽  
Vol 7 (4) ◽  
pp. 1296-1303 ◽  
Author(s):  
A. S. Ekop ◽  
N. O. Eddy

Adsorption of Pb(II) and Zn(II) ions from aqueous solutions was studied in a batch system using modified human hair. The optimum conditions for the adsorption of Pb(II) and Zn(II) ions from aqueous solution by human hair were investigated by considering the extent of adsorption with respect to contact time, initial metal ion concentration and temperature. The results obtained indicates that the extent of metal ions removed decreases with increasing contact time but increased with increase in the initial metal ion concentration. The adsorption equilibrium data best fitted Freundlich adsorption isotherm. The adsorption of Pb(II) and Zn(II) ions onto human hair is endothermic, spontaneous and is characterised by increasing degree of orderliness.


Clay Minerals ◽  
2013 ◽  
Vol 48 (5) ◽  
pp. 771-787 ◽  
Author(s):  
A. Bourliva ◽  
K. Michailidis ◽  
C. Sikalidis ◽  
A. Filippidis ◽  
M. Betsiou

AbstractThree bentonite samples (B1, B2, B3) from Milos Island, Greece, were investigated by XRD, AAS, DTA-TG, FTIR and specific surface area measurement techniques. A laboratory batch study has been performed to investigate the adsorption characteristics of lead ions (Pb2+) onto natural bentonite samples. The effect of various physicochemical factors that influence adsorption, such as solution pH (2–6), adsorbent dosage (1–10 g L–1), contact time (20–360 min), and initial metal ion concentration (5–150 mg L–1) was studied. A number of available models like the Lagergren pseudo first-order kinetic model, the pseudo second-order kinetic model and intra-particle diffusion were utilized to evaluate the adsorption kinetics. The adsorption of Pb2+ was modelled with the Langmuir, Freundlich and D-R isotherms. The maximum Pb2+ adsorption capacities for B1, B2 and B3 were 85.47 mg g–1, 73.42 mg g–1 and 48.66 mg g–1, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Hamid Raza ◽  
Aqsa Sadiq ◽  
Umar Farooq ◽  
Makshoof Athar ◽  
Tajamal Hussain ◽  
...  

Batch scale studies for the adsorption potential of novel biosorbentPhragmites karka(Trin), in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R) model, Freundlich isotherm, and Langmuir isotherm were applied. The values ofqmaxfor natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both naturalP. karkaand treatedP. karka.RLvalues indicate that comparatively treatedP. karkawas more feasible for mercury adsorption compared to naturalP. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.


2017 ◽  
Vol 19 (3) ◽  
pp. 120-129 ◽  
Author(s):  
Wojciech Konicki ◽  
Małgorzata Aleksandrzak ◽  
Ewa Mijowska

Abstract In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.


Sign in / Sign up

Export Citation Format

Share Document