scholarly journals Adsorption of Lead(II) Ions from Aqueous Solution onto Lignin

2009 ◽  
Vol 27 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Laura Bulgariu ◽  
Dumitru Bulgariu ◽  
Theodor Malutan ◽  
Matei Macoveanu

The adsorption of lead(II) ions from aqueous solution onto lignin was investigated in this study. Thus, the influence of the initial solution pH, the lignin dosage, the initial Pb(II) ion concentration and the contact time were investigated at room temperature (19 ± 0.5 °C) in a batch system. Adsorption equilibrium was approached within 30 min. The adsorption kinetic data could be well described by the pseudo-second-order kinetic model, while the equilibrium data were well fitted using the Langmuir isotherm model. A maximum adsorption capacity of 32.36 mg/g was observed. The results of this study indicate that lignin has the potential to become an effective and economical adsorbent for the removal of Pb(II) ions from industrial wastewaters.

2009 ◽  
Vol 610-613 ◽  
pp. 65-68 ◽  
Author(s):  
Xue Gang Luo ◽  
Feng Liu ◽  
Xiao Yan Lin

Konjac glucomannan (KGM) was converted into water insoluble konjac glucomannan (WIKGM) by treating with NaOH through completely deacetylated reaction. Adsorption study was carried out for the adsorption of Pb2+ from aqueous solution using water insoluble konjac glucomannan. The influences of pH, contact time, temperature and initial Pb2+ concentration on the absorbent were studied. Results of kinetic data showed that the Pb2+ adsorption rate was fast and good correlation coefficients were obtained for the pseudo second-order kinetic model. The equilibrium process was described well by the Langmuir isotherm model with maximum adsorption capacity of 9.18 mg/g on WIKGM at 25°C.


2017 ◽  
Vol 8 (2) ◽  
pp. 214-224 ◽  
Author(s):  
M. Farnane ◽  
H. Tounsadi ◽  
A. Machrouhi ◽  
A. Elhalil ◽  
F. Z. Mahjoubi ◽  
...  

AbstractThe focus of this study is the investigation of removal ability of methylene blue (MB) and malachite green (MG) dyes from aqueous solution by raw maize corncob (RMC) and H3PO4 activated maize corncob (AMC). Maize corncobs were carbonized at 500 °C for 2 h, and then impregnated at a phosphoric acid to maize corncob ratio of 2.5 g/g. The impregnated maize corncob was activated in a tubular vertical furnace at 450 °C for 2 h. Samples were characterized by different methods. Adsorption experiments were carried out as a function of solution pH, adsorbent dosage, contact time, initial concentration of dyes and the temperature. Experimental results show that the activation of maize corncob boosts four times the adsorption performance for the selected dyes. The adsorption process is very rapid and was pH dependent with high adsorption capacities in the basic range. The kinetic data were fitted with the pseudo-second-order kinetic model. The best fit of equilibrium data was obtained by the Langmuir model with maximum monolayer adsorption capacities of 75.27 and 271.19 mg/g for MB, 76.42 and 313.63 mg/g for MG, respectively, in the case of RMC and AMC. The temperature did not have much influence on the adsorption performance.


2018 ◽  
Vol 77 (5) ◽  
pp. 1303-1312 ◽  
Author(s):  
Jiangang Yu ◽  
Xingwen Zhang ◽  
Dong Wang ◽  
Ping Li

Abstract In this work, the biochar adsorbent carboxymethyl cellulose (CMC), was prepared from the pyrolysis (600 °C, 120 min) of chicken manure for the removal of methyl orange (MO) from aqueous solution, and its physicochemical properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). The experimental parameters including agitation speed, initial solution pH, biochar dosage and contact time on the adsorption properties of MO from aqueous solution onto CMC were investigated in batch experiments. The kinetic adsorption of different initial concentration could be accurately described by the pseudo-second-order model and the overall rate process was apparently influenced by external mass transfer and intra-particle diffusion. Furthermore, the Langmuir isotherm model showed a better fit with equilibrium data (R2 > 0.99), with the maximum adsorption capacity of 39.47 mg·g−1 at 25 °C. Moreover, the thermodynamic parameters indicated that the adsorption of MO onto CMC was a spontaneous and endothermic process. The results of this study indicated that CMC could be used as a promising biomass adsorbent material for aqueous solutions containing MO.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
America R. Vazquez-Olmos ◽  
Mohamed Abatal ◽  
Roberto Y. Sato-Berru ◽  
G. K. Pedraza-Basulto ◽  
Valentin Garcia-Vazquez ◽  
...  

Adsorption of Pb(II) from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn) was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), micro-Raman, and vibrating sample magnetometry (VSM). XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II) were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II) on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.


2014 ◽  
Vol 1043 ◽  
pp. 219-223 ◽  
Author(s):  
Noor Shawal Nasri ◽  
Jibril Mohammed ◽  
Muhammad Abbas Ahmad Zaini ◽  
Usman Dadum Hamza ◽  
Husna Mohd. Zain ◽  
...  

Concern about environmental protection has increased over the years and the presence of volatile organic compounds (VOCs) in water poses a threat to the environment. In this study, coconut shell activated carbon (PHAC) was produced by potassium hydroxide activation via microwave for benzene and toluene removal. Equilibrium data were fitted to Langmuir, Freundlich and Tempkin isotherms with all the models having R2 > 0.94. The equilibrium data were best fitted by Langmuir isotherm, with maximum adsorption capacity of 212 and 238mg/g for benzene and toluene, respectively. The equilibrium parameter (RL) falls between 0 and 1 confirming the favourability of the Langmuir model. Pseudo-second-order kinetic model best fitted the kinetic data. The PHAC produced can be used to remediate water polluted by VOCs.


2017 ◽  
Vol 76 (6) ◽  
pp. 1565-1573 ◽  
Author(s):  
Jun Liu ◽  
Siying Xia ◽  
Xiaomeng Lü ◽  
Hongxiang Shen

Phosphorus flame retardant tricresyl phosphate (TCP) adsorption on graphene nanomaterials from aqueous solutions was explored using batch and column modes. Comparative studies were performed regarding the kinetics and equilibrium of TCP adsorption on graphene oxide (GO) and graphene (G) in batch mode. The adsorption kinetics exhibited a rapid TCP uptake, and experimental data were well described by the pseudo-second-order kinetic model. Adsorption isotherm data of TCP on the two adsorbents displayed an improved TCP removal performance with increasing temperature at pH 5, while experimental data were well described by the Langmuir isotherm model with a maximum adsorption capacity of 87.7 mg·g−1 for G, and 30.7 mg·g−1 for GO) at 303 K. The thermodynamic parameters show that the adsorption reaction is a spontaneous and endothermic process. In addition, dynamic adsorption of TCP in a fixed G column confirmed a faster approach to breakthrough at high flow rate, high influent TCP concentration, and low filling height of adsorbent. Breakthrough data were successfully described by the Thomas and Yoon-Nelson models.


2015 ◽  
Vol 737 ◽  
pp. 537-540
Author(s):  
Yan Wei Guo ◽  
Hua Zhang ◽  
Zhi Liang Zhu

A novel Mg/Fe/Ce layered double hydroxide (LDHs) and its calcined product (CLDH) were synthesized and CLDH was used as adsorbents for the removal of chlorate ions. Results showed that the initial solution pH was an important factor influencing the chlorate adsorption. The adsorption behavior of chlorate followed the Langmuir adsorption isotherm with a maximum adsorption capacity of 18.2 mg/g. The adsorption kinetics of chlorate on CLDH can be described by the pseudo-second-order kinetic model. It was concluded that the CLDH material is a potential adsorbent for the purification of polluted water with chlorate.


Sign in / Sign up

Export Citation Format

Share Document