scholarly journals Antioxidant activity and sensory evaluation of a cold dairy-based beverage enriched with Sargassum polycystum C. Agardh extract in sunflower oil

Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 300-306
Author(s):  
A.D.R. Nurcahyanti ◽  
V. Melani ◽  
R. Pramitasari ◽  
D. Notario

Natural based functional food and beverages have gained market interest in the last decade. Functional beverages, especially those enriched with nutrients and bioactive compounds, are of particular interest. Maintaining the nutritional or bioactive activity of these components along with their sensory attributes in the final product remains to be a challenge. Health benefits from bioactive substances, like fucoxanthin and phlorotannins, in marine algae makes it a promising commodity of an archipelago country. However, nutritional components, their stability, and an understanding of their nutritional and bioactive component availability require further investigation. Here we prospected natural and sustainable antioxidant additives from brown algae, Sargassum polycystum C Agardh, to enrich a cold dairy-based beverage. Food-grade extraction of S. polycystum was done by using 96% Ethanol to macerate dried powder algal. Identification of fucoxanthin in the extract was performed using High-Performance Liquid Chromatography (HPLC) (Prominance Shimadzu). We employed the 2,2-diphenyl-1-picrylhydrazyl method to quantify the antioxidant activity of extract alone and extract in three beverage formulations containing 0.02, 0.05, and 0.1 mg/cup S. polycystum extract. Sensory evaluation and viscosity analysis comparing our product to the commercially available product was also performed. Results showed that the combination of S. polycystum extract with sunflower oil was able to maintain antioxidant activity when stored at 4°C. Formulation 2 of dairy-based beverages passed the sensory evaluation. This study was the first to report the application of S. polycystum extract on a cold dairy-based beverage. This product was developed considering the low stability of the bioactive compound, fucoxanthin. More comprehensive sensory evaluation and optimization for large scale production are highly required.

2017 ◽  
Vol 66 (4) ◽  
pp. 473-479 ◽  
Author(s):  
Laura Cuellar Alvarez ◽  
Natalia Cuellar Alvarez ◽  
Paula Galeano Garcia ◽  
Juan Carlos Suárez Salazar

Cupuassu (Theobroma grandiflorum (Willd. ex Spreng.) K.Schum.) is an evergreen tree in the family Malvaceae, with nutritional qualities of interest in the food and cosmetic industry. It is necessary for its processing, in addition to other processes, to perform a fermentation, affecting its chemical composition. Therefore, the effect of fermentation time on the phenolic content and antioxidant activity of Cupuassu (T. grandiflorum) beans, was determined. During this process, the chemical properties of the beans and the phenolic content were evaluated every two days; also quantifying the secondary metabolites Catechin, Epicatechin, Theobromine and Caffeine by high performance liquid chromatography (HPLC). The antioxidant activity was analyzed using the ABTS, DPPH, and FRAP assays. Analysis of phenolic content and antioxidant activity showed a decrease after 6 days of fermentation. Therefore, it is not recommended to continue fermentation after this period due to a negative influence of the process on the bioactive substances (Catechins) content, and the reduction of the ability to inhibit free radicals, exhibited by Cupuassu beans. 


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1899 ◽  
Author(s):  
Haiwei Yang ◽  
Zongqian Wang ◽  
Zhi Liu ◽  
Huan Cheng ◽  
Changlong Li

Aerogel fiber, with the characteristics of ultra-low density, ultra-high porosity, and high specific surface area, is the most potential candidate for manufacturing wearable thermal insulation material. However, aerogel fibers generally show weak mechanical properties and complex preparation processes. Herein, through firstly preparing a cellulose acetate/polyacrylic acid (CA/PAA) hollow fiber using coaxial wet-spinning followed by injecting the silk fibroin (SF) solution into the hollow fiber, the CA/PAA-wrapped SF aerogel fibers toward textile thermal insulation were successfully constructed after freeze-drying. The sheath (CA/PAA hollow fiber) possesses a multiscale porous structure, including micropores (11.37 ± 4.01 μm), sub-micron pores (217.47 ± 46.16 nm), as well as nanopores on the inner (44.00 ± 21.65 nm) and outer (36.43 ± 17.55 nm) surfaces, which is crucial to the formation of a SF aerogel core. Furthermore, the porous CA/PAA-wrapped SF aerogel fibers have many advantages, such as low density (0.21 g/cm3), high porosity (86%), high strength at break (2.6 ± 0.4 MPa), as well as potential continuous and large-scale production. The delicate structure of multiscale porous sheath and ultra-low-density SF aerogel core synergistically inhibit air circulation and limit convective heat transfer. Meanwhile, the high porosity of aerogel fibers weakens heat transfer and the SF aerogel cellular walls prevent infrared radiation. The results show that the mat composed of these aerogel fibers exhibits excellent thermal insulating properties with a wide working temperature from −20 to 100 °C. Therefore, this SF-based aerogel fiber can be considered as a practical option for high performance thermal insulation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jing Ning ◽  
Maoyang Xia ◽  
Dong Wang ◽  
Xin Feng ◽  
Hong Zhou ◽  
...  

Abstract Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like Ni3Si2/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni–Si particles, considerably catalyzing the growth of Ni–Si nanocrystals. By controlling the carbon source content, a Ni3Si2 single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g−1 (1193.28 F g−1) at 1 A g−1; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg−1 at 750 W kg−1, which can be attributed to the free-standing Ni3Si2/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37830-37836 ◽  
Author(s):  
Wei Wei ◽  
Linlin Guo ◽  
Xiaoyang Qiu ◽  
Peng Qu ◽  
Maotian Xu ◽  
...  

Although many routes have been developed that can efficiently improve the electrochemical performance of LiFePO4 cathodes, few of them meet the urgent industrial requirements of large-scale production, low cost and excellent performance.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4161 ◽  
Author(s):  
Vincenzo Tagliaferri ◽  
Federica Trovalusci ◽  
Stefano Guarino ◽  
Simone Venettacci

In this study, the authors present a comparative analysis of different additive manufacturing (AM) technologies for high-performance components. Four 3D printers, currently available on the Italian national manufacturing market and belonging to three different AM technologies, were considered. The analysis focused on technical aspects to highlight the characteristics and performance limits of each technology, economic aspects to allow for an assessment of the costs associated with the different processes, and environmental aspects to focus on the impact of the production cycles associated with these technologies on the ecosystem, resources and human health. This study highlighted the current limits of additive manufacturing technologies in terms of production capacity in the case of large-scale production of plastic components, especially large ones. At the same time, this study highlights how the geometry of the object to be developed greatly influences the optimal choice between the various AM technologies, in both technological and economic terms. Fused deposition modeling (FDM) is the technology that exhibits the greatest limitations hindering mass production due to production times and costs, but also due to the associated environmental impact.


2019 ◽  
Vol 135 ◽  
pp. 03017
Author(s):  
Khungianos Yavruyan ◽  
Vladimir Kotlyar ◽  
Evgeniy Gaishun ◽  
Anastasia Okhotnaya ◽  
Elizaveta Lotoshnikova ◽  
...  

General description of coal dumps products processing is described: medium factional materials - screenings that do not contain carbon; kiln fractional - coal sand, coal containing up to 30%; petty factional - coal slurries, coal containing up to 50% are given. Ceramic kilns and technological properties of processing coal dumps products are given. Compositions of raw mixtures for obtaining products with a compressive strength of 10-15 MPa and density less than 800 kg / m3, and considering the fact that the molding process is carried out semi-rigid extrusion and the necessity of minimum costs for firing is defined. Depending on the technological properties of screenings, depending on the degree of grinding and firing temperature is taken into account. Flow production of modern equipment is pointed out. Technical and economic indicators showing high profitability and the prospect of large-scale production of clay tiles on the basis of coal dumps processing products due to minimal manufacturing cost are mentioned. The carried out results of the work allowed to choose the raw materials and to develop the technological scheme of production of high-performance ceramic stones with a minimum cost. Implementation of the results in practice will create a highly profitable production and make the Rostov region a major manufacturer of ceramic wall.


Nanoscale ◽  
2021 ◽  
Author(s):  
Adrián Romaní Vázquez ◽  
Christof Neumann ◽  
Mino Borrelli ◽  
Huanhuan Shi ◽  
Matthias Kluge ◽  
...  

Graphene and related materials have been widely studied for their superior properties in a wide field of applications. However, large-scale production remains a critical challenge to enable commercial acceptance. Here,...


Sign in / Sign up

Export Citation Format

Share Document