scholarly journals Potential Extract of Poinsettia (Euphorbia pulcherrima) as a sunscreen against UV exposure

2021 ◽  
Vol 3 (1) ◽  
pp. 83-92
Author(s):  
Elvina Veronica ◽  
Ni Kadek S Chrismayanti ◽  
Putu S Dampati

Exposure to UV (Ultraviolet) rays for a certain period can cause erythema, sunburn,photoallergies, and forms ROS (Reactive Oxygen Species) which leads to gene mutations,premature aging, and skin cancer. Skin cancer in Indonesia ranks third after cervical cancer andbreast cancer. Sunscreens can protect skin from UV exposure, although many sunscreens usechemicals that can cause contact dermatitis and other allergies. Various studies have shown thatplants with antioxidants can protect the skin from exposure to UV rays. Poinsettia (Euphorbiapulcherrima) is an ornamental plant with antioxidant properties. This literature review aims to examine the potential of the poinsettia as a sunscreen against UV rays. The extract of thepoinsettia leaf has the potential to be sunscreen against UV exposure because the antioxidantcontent of flavonoids and other photo protectors, inhibits ROS, thereby preventing mutations andthe process of ordering skin cancer. Antioxidants in poinsettia help heal burns and stimulatefibroblast to prevent premature photoaging due to excessive UV exposure. Conclusion, Kastubaleaf extract (Euphorbia Pulcherrima) has the potential as a sunscreen against UV exposure Keywords: Poinsettia; Ultraviolet (UV); Antioxidant; Reactive Oxygen Species (ROS)

2020 ◽  
Vol 2 (1) ◽  
pp. 23
Author(s):  
Elvina Veronica ◽  
Putu Srinata Dampati

Abstract—Skin cancer is in the third rank in Indonesia. One of the causes of skin cancer is excessive exposure to ultraviolet rays from the sun. Ultraviolet radiation forms Reactive Oxygen Species that disrupts the regulation of the cell-matrix and causes photoaging and the burden of gene mutations that cause carcinogenesis. Black garlic is fermented garlic with a certain duration, temperature, and humidity. Black garlic has higher levels of antioxidants than garlic. Aimsresearch to determine the potential of black garlic extract as a sunscreen against ultraviolet rays. Literature study using literature review articles and research articles from international and national journals within the last ten years. Result research show black garlic extract protects the skin from ultraviolet radiation, acts as a photoprotector, prevents photoaging by stimulating fibroblast orders and prevents collagen I degradation, and prevents carcinogenesis. Black Garlic extract has a potency become sunscreen against ultraviolet exposure due to its antioxidant content. Further research is needed on the dosage and side effects. Keywords: antioxidants, black garlic, reactive oxgyen species, ultraviolet Abstrak— Kanker kulit menduduki peringkat tiga kanker terbanyak di Indonesia. Salah satu penyebab kanker kulit adalah paparan sinar ultraviolet matahari yang berlebih. Radiasi sinar ultraviolet membentuk reactive oxygen species yang mengganggu regulasi matriks sel dan menimbulkan photoaging serta memicu mutasi gen yang menyebabkan karsinogenesis. Bawang hitam merupakan bawang putih yang difermentasi dengan waktu, suhu, dan kelembapan tertentu. Bawang hitam mengandung antioksidan yang lebih tinggi dari bawang putih. Tujuan penelitian mengetahui potensi ekstrak bawang hitam sebagai tabir surya terhadap paparan sinar ultraviolet.Studi pustaka menggunakan artikel literature review dan artikel penelitian di jurnal internasional dan nasional dalam 10 tahun terakhir. Hasil: Ekstrak bawang hitam kaya akan antioksidan yang dapat melindungi kulit dari radiasi sinar ultraviolet, berperan sebagai fotoprotektor, mencegah photoaging dengan menstimulasi pembentukan fibroblas dan mencegah degradasi kolagen I, dan mencegah karsinogenesis. Ekstrak bawang putih berpotensi sebagai tabir surya terhadap paparan sinar ultraviolet karena kandungan antioksidannya. Perlu penelitian lebih lanjut tentang dosis dan efek samping yang ditimbulkan. Kata kunci: antioksidan, bawang hitam, reactive oxgyen species, ultraviolet


2020 ◽  
Author(s):  
Liang Sun ◽  
Anuj K. Sharma ◽  
Byung-Hee Han ◽  
Liviu M. Mirica

<p>Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet the cause and progression of this disorder are not completely understood. While the main hallmark of AD is the deposition of amyloid plaques consisting of the β-amyloid (Aβ) peptide, transition metal ions are also known to play a significant role in disease pathology by expediting the formation of neurotoxic soluble β-amyloid (Aβ) oligomers, reactive oxygen species (ROS), and oxidative stress. Thus, bifunctional metal chelators that can control these deleterious properties are highly desirable. Herein, we show that amentoflavone (AMF) – a natural biflavonoid compound, exhibits good metal-chelating properties, especially for chelating Cu<sup>2+</sup> with very high affinity (pCu<sub>7.4</sub> = 10.44). In addition, AMF binds to Aβ fibrils with a high affinity (<i>K<sub>i</sub></i> = 287 ± 20 nM) – as revealed by a competition thioflavin T (ThT) assay, and specifically labels the amyloid plaques <i>ex vivo</i> in the brain sections of transgenic AD mice – as confirmed via immunostaining with an Ab antibody. The effect of AMF on Aβ<sub>42</sub> aggregation and disaggregation of Aβ<sub>42</sub> fibrils was also investigated, to reveal that AMF can control the formation of neurotoxic soluble Aβ<sub>42</sub> oligomers, both in absence and presence of metal ions, and as confirmed via cell toxicity studies. Furthermore, an ascorbate consumption assay shows that AMF exhibits potent antioxidant properties and can chelate Cu<sup>2+</sup> and significantly diminish the Cu<sup>2+</sup>-ascorbate redox cycling and reactive oxygen species (ROS) formation. Overall, these studies strongly suggest that AMF acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity, can also bind Cu<sup>2+</sup> and mediate its deleterious redox properties, and thus AMF has the potential to be a lead compound for further therapeutic agent development for AD. </p>


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2017 ◽  
Vol 165 (4) ◽  
pp. 213-222 ◽  
Author(s):  
Kelvin Kiran Anthony ◽  
Dominic Soloman George ◽  
Hasvinder Kaur Baldev Singh ◽  
Shi Ming Fung ◽  
Vicknesha Santhirasegaram ◽  
...  

Author(s):  
Marta Goschorska ◽  
Izabela Gutowska ◽  
Irena Baranowska-Bosiacka ◽  
Katarzyna Piotrowska ◽  
Emilia Metryka ◽  
...  

It has been reported that donepezil and rivastigmine, the acetylcholinesterase (AchE) inhibitors commonly used in the treatment of Alzheimer’s disease (AD), do not only inhibit AChE but also have antioxidant properties. As oxidative stress is involved in AD pathogenesis, in our study we attempted to examine the influence of donepezil and rivastigmine on the activity of antioxidant enzymes and glutathione concentration in macrophages—an important source of reactive oxygen species and crucial for oxidative stress progression. The macrophages were exposed to sodium fluoride induced oxidative stress. The antioxidant enzymes activity and concentration of glutathione were measured spectrophotometrically. The generation of reactive oxygen species was visualized by confocal microscopy. The results of our study showed that donepezil and rivastigmine had a stimulating effect on catalase activity. However, when exposed to fluoride-induced oxidative stress, the drugs reduced the activity of some antioxidant enzymes (Cat, SOD, GR). These observations suggest that the fluoride-induced oxidative stress may suppress the antioxidant action of AChE inhibitors. Our results may have significance in the clinical practice of treatment of AD and other dementia diseases.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 54-54
Author(s):  
Amrita Bhagat ◽  
Renee Emerson ◽  
Kitty DeJong ◽  
Frans A. Kuypers

Abstract Red blood cells (RBCs) contain a complex set of enzymes and non-enzymatic scavengers as defense against reactive oxygen species (ROS). Peroxiredoxin II (PrxII), a member of a family of small proteins with strong antioxidant properties, is highly abundant in RBCs. PrxII is likely to play an essential role in ROS protection, as RBCs generate high levels of ROS due to their role in oxygen transport and the presence of redox active hemoglobin. Phosphatidylserine (PS) asymmetry in RBCs is maintained by the active transport of PS from outer to inner monolayer by the oxidant sensitive aminophospholipid translocase or flipase. PS exposure is found in RBCs where phospholipid scrambling is activated and the flipase is inhibited. In PrxII−/− mice, PrxII is absent from the RBC. These mice are anemic (Hct 41% vs. 46% in wild type mice (WT)), with increased reticulocyte count (4.7% vs. 2.0 % in WT), and a morphologically diverse RBC population. RBC indices after isovolumetric sphering showed a similar MCH (14.3 vs. 14.2), slightly increased MCV (49.2 fl vs. 45.5 fl) and slightly decreased MCHC (30.1 vs. 32.1) in PrxII−/− mice as compared to WT. In flow cytometric analysis, two distinct populations of RBC are found with either slight or significantly increased autofluorescence in the fluorescein channel (excitation 488 nm, emission 515 nm), indicative of oxidant damage. These two populations of low (LF) and high (HF) fluorescent cells comprise 70–80% and 20–30% of the total RBC population respectively. RBC from PrxII−/− and WT mice were biotinylated using EZ-Link Sulfo-NHS-Biotin (Pierce) allowing turnover studies of the LF and HF population. At set time points, the number of biotinylated cells was determined in small blood samples by flow cytometry using fluorescently labeled streptavidin. The data were mathematically fitted to 100–100*[1−(1/T)*t]exp(−kt), where t is the time point, T is the extinction time, and k the exponential rate of RBC removal. The data in the WT showed a linear removal rate (k=0), and a T of 40 days (R2=0.99). In PrxII−/−, an overall faster disappearance of biotinylated cells was noted, and the number of surviving (biotinylated) cells in the population followed an exponential pattern, consistent with random removal (k=0.08, R2= 0.98). At 20 days, 50% of biotinylated RBC were present in WT, but only 18% were found in PrxII−/− mice. In the non-biotinylated RBC, HF cells started to appear at day 13, indicating that autofluorescence is acquired in time. Using the fluorescent ROS membrane probe C11-BODIPY, our data indicate a higher level of ROS in the HF population. The HF population exhibited a lower flipase activity and increased phospholipid scrambling, as measured by labeling with annexin V. Together, our data indicate the importance of PrxII in the maintenance of RBC membrane integrity and suggest that oxidant induced PS exposure is in part responsible for shortened RBC survival in these mice. These findings indicate a role for oxidation in the exposure of PS on the RBC surface, which may clarify mechanisms in oxidant induced membrane alterations in hemoglobinopathies.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Agata Campisi ◽  
Rosaria Acquaviva ◽  
Roberta Bonfanti ◽  
Giuseppina Raciti ◽  
Andrea Amodeo ◽  
...  

Berberis aetnensisC. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots ofB. aetnensisC. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties ofB. aetnensisC. Presl collected in Sicily. Air-dried, powdered roots ofB. aetnensisC. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract ofB. aetnensisC. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots ofB. aetnensisC. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.


2020 ◽  
Vol 25 (2) ◽  
pp. 95
Author(s):  
Ameerah Tharek ◽  
Shaza Eva Mohamad ◽  
Koji Iwamoto ◽  
Iwane Suzuki ◽  
Hirofumi Hara ◽  
...  

Microalgae are known to be a potential resource of high-value metabolites that can be used in the growing field of biotechnology. These metabolites constitute valuable compounds with a wide range of applications that strongly enhance a bio-based economy. Among these metabolites, astaxanthin is considered the most important secondary metabolite, having superior antioxidant properties. For commercial feasibility, microalgae with enhanced astaxanthin production need to be developed. In this study, the tropical green microalgae strain, Coelastrum sp., isolated from the environment in Malaysia, was incubated with methyl viologen, a reactive oxygen species (ROS) reagent that generates superoxide anion radicals (O2-) as an enhancer to improve the accumulation of astaxanthin. The effect of different concentrations of methyl viologen on astaxanthin accumulation was investigated. The results suggested that the supplementation of methyl viologen at low concentration (0.001 mM) was successfully used as a ROS reagent in facilitating and thereby increasing the production of astaxanthin in Coelastrum sp. at a rate 1.3 times higher than in the control.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1266
Author(s):  
Noelia Carballeda Sangiao ◽  
Susana Chamorro ◽  
Sonia de Pascual-Teresa ◽  
Luis Goya

Cocoa is a rich source of polyphenols, especially flavanols and procyanidin oligomers, with antioxidant properties, providing protection against oxidation and nitration. Cocoa phenolic compounds are usually extracted with methanol/ethanol solvents in order to obtain most of their bioactive compounds; however, aqueous extraction seems more representative of the physiological conditions. In this study, an aqueous extract of cocoa powder has been prepared and chemically characterized, and its potential protective effect against chemically-induced oxidative stress has been tested in differentiated human neuroblastoma SH-SY5Y cells. Neuronal-like cultured cells were pretreated with realistic concentrations of cocoa extract and its major monomeric flavanol component, epicatechin, and then submitted to oxidative stress induced by a potent pro-oxidant. After one hour, production of reactive oxygen species was evaluated by two different methods, flow cytometry and in situ fluorescence by a microplate reader. Simultaneously, reduced glutathione and antioxidant defense enzymes glutathione peroxidase and glutathione reductase were determined and the results used for a comparative analysis of both ROS (reactive oxygen species) methods and to test the chemo-protective effect of the bioactive products on neuronal-like cells. The results of this approach, never tested before, validate both analysis of ROS and indicate that concentrations of an aqueous extract of cocoa phenolics and epicatechin within a physiological range confer a significant protection against oxidative insult to neuronal-like cells in culture.


Sign in / Sign up

Export Citation Format

Share Document