scholarly journals Effect of Rice Husk Ash and Water-Cement Ratio on Strength of Concrete

2018 ◽  
Vol 4 (10) ◽  
pp. 2373 ◽  
Author(s):  
Naraindas Bheel ◽  
Shanker Lal Meghwar ◽  
Suhail Ahmed Abbasi ◽  
Lal Chand Marwari ◽  
Jabbar Ahmed Mugeri ◽  
...  

In present status quo, number of researcher are working on waste materials as potential supplement for any of the constituent of concrete to cope with sustainable development. As, the ingredients which constitute the body and give strength to concrete are natural available limited material and has to deplete one day. Thus, there is desperately need of alternate that may replace the limited natural resources. In this regard, this study focuses the rice husk ash (waste stuff) as partial replacement of cement and its possible impact on strength of concrete. In addition, this research work also this research work is conducted to investigate the effect of water-cement ratio on the strength of concrete at 10% partially replacement of Rice husk ash (RHA) by the weight of cement. RHA is a mineral admixture obtained by burning husk at certain temperature. Since as per pervious researches, the physical and chemical properties of RHA are very reactive Pozzolans and possess binding properties so can be used as cement supplement. Therefore, for laboratory experimental work, total 144 cubical and 72 cylindrical. In this research, number of concrete specimens were cast and tested at 1:2:4 mix ratio with various w/c ratios i.e. 0.45, 0.50 and 0.60. Further, at each specified water-cement ratio, two mechanical properties (compressive and splitting tensile strength) were determined in Universal Testing Machine (UTM). These physical properties of concrete were investigated at 7, 14, 28 and 56 days curing period. The experimental results show that the compressive strength gets increased up to 14.51% and tensile splitting test strength increased up to 10.71% at the w/c ratio of 0.45. The workability of plain fresh concrete at all w/c ratios is slightly greater than the workability of concrete blended with 10% RHA. Thus, RHA improves the properties of concrete when used in specific amount. As a result, it can reduce the overall cost of construction and it will reduce the adverse environmental effect. 

2018 ◽  
Vol 7 (3.35) ◽  
pp. 68
Author(s):  
Tolmatti Vamshi Krishna ◽  
M. Ashwin Kumar ◽  
Kunchala Anjaneyulu

Bagasse ash (BA), the residue obtained after the burning of sugarcane bagasse as a fuel, has pozzolanic properties with potential use as a supplementary binding material (SCM). Use of Bagasse ash (BA) as a mineral admixture needs to be established, especially in India, where sugarcane cultivation is widespread, to reduce land required for its disposal and cement consumption in construction industry. Hence, to encourage commercial use ofBA with minimum processing, an evaluation of the physical, chemical and  morphological characteristics of a locally available BA and its effect, as SCM on properties of structural concrete was taken up.This research work describes the feasibility of using the Fly Ash (FA) Rice Husk Ash (RHA) and Sugarcane Bagasse Ash(SCBA) waste in concrete production as a partial replacement of cement. This present work deals with the effect on strength and mechanical properties of concrete using Triple blending of cement concrete using FA, RHA and SCBA instead of cement. The cement has been replaced by rice husk ash, accordingly in the range with 0%, 10%, 20% and 30% by weight. Concrete mixture of M20 and M25 and M30, were produced, tested and compared in terms of compressive strengths with the Conventional concrete. These tests were carried out to evaluate the mechanical properties for the test results of7, 14, 28, 56 and 90 days for Compressive strengths and Tensile & Flexural Strengths at 28 days. The durability aspect of the samples for Acid attack, Alkaline attack and Sulphate attack was also tested. The result indicates that the FA, RHA and SCBA improve the Compressive Strength and durability of concrete.  


2013 ◽  
Vol 4 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Ong Ming Wei ◽  
Norsuzailina Mohamed Sutan

Efflorescence phenomenon on concrete is not new and found in the form of white deposits on surfaces of concrete. Incorporation of Finely Ground Mineral Admixture (FGMA) in concrete to prevent occurrence of efflorescence is based on reduction of portlandite, densified microstructure and thus enhanced watertightness. The magnitude of efflorescence in term of percentage of calcium carbonate formation of FGMA modified mortar were evaluated at water-cement ratio of 0.3, 0.4 and 0.5 with 10%, 20%, and 30% of cement replacement by weight. The samples were tested with chemical analysis at 7, 14, 21, 28, 60 and 90 days. The FGMA additions into mortar were comparing with ordinary mortar to evaluate enhanced performance of FGMA modified mortar toward efflorescence. The results of this experiment showed that addition of FGMA into mortar caused less formation of calcium carbonate as partial replacement of cement with certain w/c ratio and percentage of cement replacement.


Author(s):  
Musaib Bashir Dar

Abstract: In this developing era concrete and cement mortar are widely used by the construction industry, with this development. Large number of industrial wastes are generated and if these wastes are not properly used it will create severe problems, keeping the environment in mind, concrete engineers are trying to find some alternative materials which will not only replaces the cement content but also improves strength of concrete. As we also know that during the manufacturing of cement large amount of Co2 is released into the environment, but if we use such material that will replace the quantity of cement content therefore indirectly, we are contributing towards the prevention of our planet from global warming and other pollutions. Also, in this research work the Rice Husk Ash is used. the rice husk ash obtained from the rice processing units, by adding this product with concrete, not only replaces the cement content but also increases the strength of concrete like compressive strength etc. The Rice husk ash was incorporated with concrete with varying percentages of 2.5% ,5% ,7.5%, & 10%. the proper codal precautions were followed during the manufacture of concrete cubes of 150x150x150mm. it was concluded that the strength of concrete increased by incorporated the rice husk ash. Keywords: Concrete, RHA, Compressive strength, Industrial wastes, Cement etc


2017 ◽  
Vol 13 ◽  
pp. 6140-6150
Author(s):  
A.N. Swaminathen ◽  
S.Robert Ravi

 Concrete is the most extensively used construction material around the world and its properties have been undergoing changes through technological advancements. Varieties of concrete have been developed to enhance the different properties of concrete. An investigation in to the potential use of partial replacement of mineral admixture in high performance concrete (HPC) has carried out. The engineering properties of fresh and hardenedconcrete are obtained by conducting test on slump, vee-bee, compaction factor and compressive strength, flexural strength, spilt tensile strength and modulus of elasticity, in this project partial replacement of cement bymetakaolin and rice husk ash been used for varying replacement of 0+0%, 5+105, 7.5+10%,10+10%,5+12.5%, 10+12.5%, 5+15%, 7.5+15%,  and 10+15%for high strength, workability and also an eco-friendly by less emission of co2. It has been concluded that strength development of concrete blended with metakaolin and rice hush ash was enhanced. It was found that in 7.5% replacement of metakaolin and 12.5% replacement of rice husk ash appear to be the optimum replacement which exhibited more strength. This investigation has proved that the MK and RHA concrete can be used as structural concrete at suitable replacement percentage. 


2021 ◽  
Vol 889 (1) ◽  
pp. 012072
Author(s):  
Amit Sharma ◽  
Sanjeev Gupta

Abstract The impact of the OPC on the environment is important as its production generates a large amount of CO2. In order to reduce the use of pure raw materials as resources, the use of industrial waste or secondary materials in construction sites for the production of cement and concrete has been encouraged. The volume of wastes generated worldwide has increased over the years due to the population, social and economic performance and social development. One of the most attractive options for waste management is to minimize waste and reuse the possibility of recycling. The cost of cement used in concrete works is increasing and unsatisfactory, but the demand for this material and other housing needs is rising, so it is important to find alternatives that can be used alone or in a partial replacement. In this research work several auxiliary cementitious ingredients such as metakaoline, GGBFS and Rice Husk Ash (RHA) were used to improve the strength properties of the conservative concrete. Metakaolin and GGBFS was used at a fixed percentage of 10 percent as fractional substitution of the OPC-43 grade cement, while the RHA was used at different percent ranging from 0 to 25 percent at an increment of 5 percent in each case as fractional substitution of the OPC-43 grade cement. Numerous examinations were executed so as to envisage the effect of these materials over the strength and engineering properties of the concrete. The test results conclude that the usage of the metakaolin, GGBFS and the RHA in combined form increased the strength and engineering properties of the conventional concrete up to a great extent. From the obtained test results it can be further concluded that the particle size of the supplementary cementitious materials plays a significant role in enhancing the internal micro-structure of the concrete and which further leads to the higher strength of the concrete. Also the main reason behind the advanced strength was the presence of the metakaolin and GGBFS in the concrete, whose chemical properties densifies the concrete and made the concrete more stable and promotes higher strength. Future work can also be done on the usage of several other supplementary cementitious materials at different other percentages so as to improve concrete properties.


2021 ◽  
Author(s):  
Khawaja Adeel Tariq ◽  
Muhammad Sohaib ◽  
Mirza Awais Baig

AbstractThis research work is related to the study of effects on properties of concrete having rice husk ash as cementitious supplementary materials. Total four mixes of concrete were done with varying percentages of rice husk as 6%, 12% and 18%. The tensile, flexural and compressive strengths that contain rice husk ash were determined by testing cubes, cylinders and beams. There was a replacement of 6%, 12% and 18% of rice husk ash in all mixes except the control mix. The concrete's flexural strength with rice husk ash increases at the beginning and at the later age (i.e., 28 days) similar to control mix; however, variation in compressive and splitting tensile strength is negligible. The optimum results are achieved with 6% replacement of cement with rice husk ash. Therefore, it was inferred that rice husk ash could be used as partial replacement of cement in concrete to produce economic concrete.


In this research work, the effect of rice husk ash on concrete produced with cellulose industrial residue was studied. A mix proportion of 1:1.8:3.7 with water cement ratio of 0.47 were used. The percentage replacement of Ordinary Portland Cement (OPC) with cellulose industrial residue and rice husk ash used were 0%, 5%, 10%, 20% 30% and 40%. Concrete cubes of 150mm x 150mm x 150mm of Ordinary Portland Cement/Cellulose Industrial Residue and Ordinary Portland Cement/Cellulose Industrial Residue/Rice Ash were cast and cured at 3,7,28,60 and 90 days respectively. At the end of each hydration period, the concrete cubes were crushed and their compressive strength were determined. The result of compressive strength of 5-40% replacement of cement with cellulose industrial residue ranges from 13.02-32.81 N/mm2 as against 25.60-42.08N/mm2 for the control test. The result of the compressive strength of 5-40% replacement of cement with Cellulose Industrial Residue and Rice Husk Ash ranges from 13.17-36.30N/mm2 as against 25.60-42.08N/mm2 for the control test. The result of the initial and final setting time of Ordinary Portland Cement/Cellulose Industrial Residue and Cement/Cellulose Industrial Residue/Rice Husk Ash for 5-40% replacement of cement ranges from 61-118mins, 58-110mins and 620 – 836mins, 598 – 799mins respectively as against 52mins and 590mins for the control test. The main conclusion of this study is that the incorporation rice husk ash into cellulose industrial residue increase the strength of concrete produced. The objective of this study is to assess the strength of concrete produced when two pozzolanic materials were used to replace cement in producing concrete.


In these papers present we have replaced with cement by rice husk ash concrete which contains silica. Rice being the staple food of the Indian Subcontinent, huge quantities of paddy is grown, milled to yield rice and byproduct, rice husk, is going as waste material in the absence suitable recycling technology till recently. Rice husk when burnt yields ash with 80 to 90 percent of silica depending upon the temperature of burning. Extensive studies conducted have revealed that the concrete made of cements partially replaced by rice husk ash yielded good concrete with high early strengths. The replacement is 30 percent in 1:1.6:2.8 mix ratio with water cement Ratio 0.5. The study present with the strength properties of compressive strength for cube and cylinder split tensile strength, modulus of rupture. Rice husk ash considerable increased strength for partial replacement and disposal of Partial replacement of cement by rice husk ash considerable increase strength and disposal of rice husk is also considerably reduced.


2021 ◽  
Vol 15 (1) ◽  
pp. 339-346
Author(s):  
Winfred Mutungi ◽  
Raphael N. Mutuku ◽  
Timothy Nyomboi

Background: Creep in concrete is a long-term deformation under sustained loading. It is influenced by many factors, including constituent materials, environmental conditions, among others. Whenever there is an alteration in the convectional concrete preparation process, the creep characteristics need to be realistically assessed. In the present construction, rice husk ash has been used for partial replacement of cement in concrete production. This is because its properties of both tensile and compressive strength in concrete have been tested and found comparable with plain concrete. However, durability characteristics such as creep, which take place in the long run, have not been realistically assessed. Therefore, it is important to study the creep of rice husk ash concrete, which will further help in the development of a creep prediction model for such concrete for use by design engineers. Objectives: Rice husk ash was used as supplementary cementitious material in concrete, and the creep behavior was studied with the aim of producing a creep prediction model for this concrete. Methods: The cement was replaced with 10% of rice husk ash in concrete with a design strength of 30MPA. Reinforced concrete beams were cast and loaded for flexural creep 35 days after casting. The loading level was 25% of the beam’s strength at the time of loading. The creep observation was done for 60 days. The rice husk used was obtained locally from Mwea irrigation scheme in Kenya. The experiments were carried out in our school laboratory at Jomo Kenyatta university of Agriculture and Technology. Results: The creep strain data of rice husk ash concrete beams was obtained with the highest value of 620 micro strain for 60 days. The results were used to develop a creep prediction model for this concrete. Conclusion: A creep prediction model for rice husk ash concrete has been developed, which can be adopted by engineers for class 30 of concrete containing rice husk ash at a 10% replacement level.


Sign in / Sign up

Export Citation Format

Share Document