scholarly journals Behavior of Reinforced Reactive Powder Concrete Two-Way Slabs under Static and Repeated Load

2018 ◽  
Vol 4 (6) ◽  
pp. 1178 ◽  
Author(s):  
Hala Aqeel Hamid ◽  
Shatha D. Mohammed

This paper studies the behavior of reinforced Reactive Powder Concrete (RPC) two-way slabs under static and repeated load. The experimental program included testing six simply supported RPC two-way slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. All the tested specimens were identical in their material properties, and reinforcement details except their steel fibers content. They were cast in three pairs, each one had a different steel fibers ratio (0.5 %, 1 %, and 1.5 %) respectively. In each pair, one specimen was tested under static load and the other under five cycles of repeated load (loading-unloading). Static test results revealed that increasing steel fibres volume fraction from 0.5 % to 1 % and from 1% to 1.5%, led to an increase in the: first crack load by (32.2 % and 52.3 %), ultimate load by (36.1 % and 17.0 %), ultimate deflection by (33.6 % and 3.4 %), absorbed energy by (128 % and 20.2 %), and the ultimate strain by (1.1 % and 6.73 %). It also increased the stiffness and the ductility of the specimens especially at the final stages of loading. Additionally, it delayed the propagation of the cracks, controlled their growth, kept the integrity of the specimens at post cracking stage, and avoided their ruin at the failure stage through its “bridging” effect. For the repeated load test, applying five cycles of repeated load to the steel fiber reinforced RPC two-way slab specimens led to a decreasing in the ultimate load capacity, ultimate deflection, ultimate strain, and absorbed energy in a comparison with the corresponding static test specimens, and that because of the loading-unloading process which causes a fluctuation of stresses and more damages in concrete. Increasing the steel fibers volume fractions decreased the dissipated energy of the specimens that subjected to a repeated load, where the difference percent of dissipated energy between the first and second cycles of (R0.5 %, R1 %, and R1.5 %) specimens were (68.0 %, 46.2%, and 32.4%) respectively.

2019 ◽  
Vol 13 (1) ◽  
pp. 260-270
Author(s):  
Yaarub G. Abtan ◽  
Hassan Falah Hassan

Background: Over the last three decades, the interest in using advanced high-performance materials in the construction industry has been increasing worldwide. Recently, a very high strength cement-based composite with high ductility called Reactive Powder Concrete (RPC) has been developed. The RPC concept is based on the principle that a material with a minimum of defects such as micro-cracks and voids will be able to achieve greater load-carrying capacity and durability. Methods: In the present paper, an experimental program of sixteen reinforced concrete one-way slabs was conducted to investigate their behavior under flexural loading. Four of these slabs were with Normal Concrete (NC) and the others of Modified Reactive Powder Concrete (MRPC). All slabs were identical in the dimension of its length and width (1000×500) mm, respectively, and its thickness was varied as one of the variables used in the present work. Other parameters for a one-way slab are concrete type, steel fibers content and flexural steel reinforcement ratio (0.33 and 0.66)%. Results: The results showed that the MRPC slabs with steel fibers failed in a ductile manner and had ultimate load capacity more than that of non-fibrous MRPC with an improvement percentage that reaches up to (66) %. This percentage became (212) % in comparison with normal concrete slabs. Conclusions: Moreover, the results showed that slabs, for both concrete types, reinforced with lower steel ratio failed by tension mode, otherwise, the slabs of higher reinforcement steel ratio failed by combined tension-shear mode. However, an improvement was observed in the ultimate load capacity up to (53 and 98) % when the ratio of steel reinforcement and slab thickness increased, respectively.


2017 ◽  
Vol 3 (2) ◽  
pp. 81 ◽  
Author(s):  
Ashraf Abdulhadi Alfeehan ◽  
Hassan Issa Abdulkareem ◽  
Shahad Hameed Mutashar

Voided slabs are reinforced concrete slabs in which voids allow to reduce the amount of concrete. The bubbled deck slab is a new and sustainable biaxial floor system to be used as a self-supporting concrete floor. The use of voided slabs leads to decrease the consumption of materials and improve the insulation properties for enhancing the objectives of sustainability. This study presents an investigation into the flexural behavior of sustainable Reactive Powder Concrete RPC bubbled slab flooring elements. Six one-way slabs were cast and tested up to the failure. The adopted variables in this study are: the volumetric ratio of steel fibers, type of slab; bubbled or solid, placing of reinforcement and thickness of slab. The effect of each variable on the ultimate load, deflection and strain has been discussed. The results show that increasing the percent of steel fibers from 1% to 2% in solid and bubbled slabs decreases the deflection by (18.75%) and (50%) respectively. As well as, the deflection increases by (41%) for bubbled slab compared to the solid slab. The slabs reinforced with top and bottom steel meshes show less deflection than slabs reinforced by only bottom steel mesh.


2019 ◽  
Vol 26 (1) ◽  
pp. 9-19
Author(s):  
Mazin B. Abdulrahman ◽  
Husham M. Rashid

In modern buildings, transverse openings are often used beams for the purpose of supplying and service pipes. Due to the presence of the openings in the concrete beams lead to the formation of cracks around the openings due to the stresses concentration in a small area above and below of the opening. The repairing, maintenance, and upgrading of structural members, are maybe one of the most pivotal problems in civil engineering applications. In this research, an experimental work is conducted to study the behavior of the reinforced RPC T-beams that containing openings and repair this beams using CFRP strips. The Experimental program of the present study includes two parts, the first part includes testing of seven reinforced reactive powder concrete RPC T-beams, which casted and tested, one beam is without opening as a reference beam and the rest, were provided with an opening. and these beams are divided into two groups. The first group was used to study the effect of the openings shape (circular and square) and the second group was used to study the effect of the openings locations, which consists three locations (Lc/2, Lc/3 and Lc/4).These are measured from the support center to the openings center. While the second part including a repaired all beams in the first part the using carbon fiber polymer. The test results indicated that the presence of openings in the beams web caused a reduction in the reinforced RPC T-beams ultimate load carrying capacity with about (10-55)%, Also lead to increasing in deflection compared to control beam before repairing at same loading. Studying the shape effect showed that the beams with square openings have average ultimate load carrying capacity lower by 36% compared with the control beams.While beams with containing circular openings have average ultimate load carrying capacity lower 29%. From the test results, it could be concluded that the presence of the openings in the shear region led to a decrease in ultimate load carrying capacity a about 38% to 49% for opening of opening at (Lc/3 and Lc/4) respectively. While the presence of openings in the flexural region led to a decrease in the ultimate load carrying capacity rate of 11%. Related to the repairing study part it was found that the average ultimate load carrying capacity for repairing beams was 103% compared with the not repaired beams.


Author(s):  
Mohammed S. Nasr ◽  
Zaid A. Hasan ◽  
Mohammed K. Abed ◽  
Mohammed K. Dhahir ◽  
Wissam N. Najim ◽  
...  

The reactive powder concrete (RPC) is one of the special concrete types that characteristics with high cement content which means high production cost and CO2 emissions to the atmosphere. Therefore, to enhance the environment as well as to develop green RPC, alternatives to cement, such as supplementary cementitious materials (SCMs) were used. Limited studies addressed the use of a high volume fraction of SCMs as a binary combination in the production of RPC. Thus, this study aims to replace a high percentage of cement (50%) with binary combinations of silica fume (SF), type F fly ash (FA) and metakaolin (MK). The experimental program included two phases. In phase one, two groups (SF+FA and MK+FA) were cast without steel fibers. Based on group performance in the first phase, one group was chosen to be used with steel fibers in the second phase. The flow rate, compressive and flexural strengths, density, ultrasonic pulse velocity and dynamic modulus of elasticity tests were conducted. The phase one results showed that SF+FA combination mixtures had better performance than MK+FA mixtures thus they were selected to be used in the second phase (with the addition of 1% volumetric fraction micro steel fibers). Results indicated that it is possible to produce sustainable RPC in which the cement can be replaced with 30% SF and 20% FA (the total replacement is 50%) in the presence of 1% steel fibers with a remarkable enhancement in compressive strength and flexural strength reached up to 44% and 10%, respectively.


2019 ◽  
Vol 9 (12) ◽  
pp. 2456 ◽  
Author(s):  
Mathias Flansbjer ◽  
Natalie Williams Portal ◽  
Daniel Vennetti

As a part of the SESBE (Smart Elements for Sustainable Building Envelopes) project, non-load bearing sandwich elements were developed with Textile Reinforced Reactive Powder Concrete (TRRPC) for outer and inner facings, Foam Concrete (FC) for the insulating core and Glass Fiber Reinforced Polymer (GFRP) continuous connectors. The structural performance of the developed elements was verified at various levels by means of a thorough experimental program coupled with numerical analysis. Experiments were conducted on individual materials (i.e., tensile and compressive tests), composites (i.e., uniaxial tensile, flexural and pull-out tests), as well as components (i.e., local anchorage failure, shear, flexural and wind loading tests). The experimentally yielded material properties were used as input for the developed models to verify the findings of various component tests and to allow for further material development. In this paper, the component tests related to local anchorage failure and wind loading are presented and coupled to a structural model of the sandwich element. The validated structural model provided a greater understanding of the physical mechanisms governing the element’s structural behavior and its structural performance under various dead and wind load cases. Lastly, the performance of the sandwich elements, in terms of composite action, was shown to be greatly correlated to the properties of the GFRP connectors, such as stiffness and strength.


2020 ◽  
Vol 897 ◽  
pp. 41-48 ◽  
Author(s):  
Munther L. Abdul Hussein ◽  
Sallal R. Abid ◽  
Sajjad H. Ali

An experimental program was directed in this study to evaluate the abrasion resistance of reactive powder concrete (RPC) under direct normal impact of water jet. Abrasion and compressive strength specimens were cast from six RPC mixtures using different single and hybrid distributions of 6 mm-length and 15 mm-length micros-steel fibers and 18 mm-length polypropylene fiber. Fixed mix proportions were used for the six RPC mixtures and with fixed total volumetric fiber content of 2.5%. In addition to the RPC mixtures, a normal concrete mixture was prepared for comparison purposes. All specimens were cured in the same conditions and tested at an age of 28 days. The test results showed that abrasion weight losses increase with time at rates that are independent of fiber type and fiber distribution. The results also showed that all RPC mixtures exhibited significantly lower abrasion losses than normal concrete. The lowest percentage abrasion weight losses were recorded for the mixture with pure 15 mm micro-steel, where after 12 testing hours, it was 0.41% of the total weight before testing. On the other hand, the mixture with pure 6 mm micro-steel fiber exhibited the highest percentage abrasion weight loss (0.98%) among the six RPC mixtures. Another conclusion is that the inclusion of polypropylene fiber to compose hybrid fiber distribution with micro-steel fiber led mostly to lower abrasion losses.


2009 ◽  
Vol 405-406 ◽  
pp. 37-43 ◽  
Author(s):  
Heng Jing Ba ◽  
Ai Li Guo ◽  
Ying Zi Yan

According to the theory of dense packing of particle, the theoretical particle size distribution of raw materials of RPC (Reactive Powder Concrete) was calculated. On the basis, the ratio of raw materials with different range of particle sizes of the RPC was determined by mechanical experiments. According to the determined ratio, a new type RPC was prepared by using flying ash and slag to replace part of cements and quartz flour, respectively. The workability, mechanical properties of the new RPC with different mix proportion and its shrinkage, cured at the normal temperature and 60°C, respectively, were studied. The results show that when water-binder ratio is 0.23, fly ash replaces 30% cements, slag replaces 50% quartz flour and superfine steel fibers percentage in volume is 2%, the compressive and flexural strength of prepared RPC are 160.1MPa and 25.3MPa, respectively, and after 3days heat curing (60°C), the dry shrinkage of it in 28days age reaches 299um/m. In addition, the fluidity of the new RPC is 258mm and meets requirements of workability of the pump concrete.


2018 ◽  
Vol 24 (7) ◽  
pp. 75
Author(s):  
Mohammed Mosleh Salman ◽  
Husain Khalaf Jarallah ◽  
Raed Satar Al-Behadili

In this research, the structural behavior of reinforced concrete columns made of normal and hybrid reactive powder concrete (hybrid by steel and polypropylene fibers) subjected to chloride salts with concentration was 8341.6 mg/l. The study consists of two parts, the first one is experimental study and the second one is theoretical analysis.  Three main variables were adopted in the experimental program; concrete type, curing type and loading arrangement. Twenty (120x120x1200) mm columns were cast and tested depending on these variables. The samples were reinforced using two different bars; Ø8 for ties and Ø12 with minimum longitudinal reinforcement (0.01Ag). The specimens were divided into two main groups based on curing type: The first group consists of casting and testing of ten columns that cured in tap water for 28 days with two types of concrete (normal and hybrid), five columns for each type. While the second group consists of ten columns that direct cured and fully immersed in chloride water (8341.6 mg/l) 6 months with two types of concrete (normal and hybrid), five columns for each type. The specimens were tested under three types of loading, the first one is axial load, the second one is eccentric load with three different eccentricities (50,100 and 150) mm and where (e/h) are (0.42, 0.83 and 1.25) respectively from the center of column while the third type of loading is tested the specimens as beam. The experimental results showed an increase in ultimate load capacity and higher chlorides resisting for hybrid reactive powder concrete in comparison with normal concrete in both types of curing (tap and chloride water) through studying strain profile. Interaction diagram charts were obtained from different types of loading for each specimen. These charts showed high values for hybrid reactive powder concrete in comparison with normal concrete.  


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1751 ◽  
Author(s):  
Guangyao Yang ◽  
Jiangxiong Wei ◽  
Qijun Yu ◽  
Haoliang Huang ◽  
Fangxian Li

This study investigated the strength and toughness of reactive powder concrete (RPC) made with various steel fiber lengths and concrete strengths. The results indicated that among RPC samples with strength of 150 MPa, RPC reinforced with long steel fibers had the highest compressive strength, peak strength, and toughness. Among the RPC samples with strength of 270 MPa, RPC reinforced with short steel fibers had the highest compressive strength, and peak strength, while RPC reinforced with medium-length steel fibers had the highest toughness. As a result of the higher bond adhesion between fibers and ultra-high-strength RPC matrix, long steel fibers were more effective for the reinforcement of RPC with strength of 150 MPa, while short steel fibers were more effective for the reinforcement of RPC with strength of 270 MPa.


Sign in / Sign up

Export Citation Format

Share Document