scholarly journals DEVELOPMENT OF ORGANIZATIONAL AND TECHNOLOGICAL SOLUTIONS FOR RECONSTRUCTION OF WATER TREATMENT FACILITIES

2021 ◽  
Vol 9 (2) ◽  
pp. 26-30
Author(s):  
Svetlana Chutchenko ◽  
Sergej Evtushenko ◽  
Nikolai Djulai

The article continues the cycle of works on the preparation of industrial buildings for reconstruction and their examination. In this article, organizational and technological solutions are systematized, which are mandatory for use in the reconstruction of water treatment facilities. Design solutions for the reconstruction of treatment facilities are based on a new treatment technology.

2006 ◽  
Vol 6 (2) ◽  
pp. 245-251
Author(s):  
A. Ando ◽  
Y. Kajiyama ◽  
N. Takigawa

To supply safe, good-quality tap water, Osaka Municipal Waterworks Bureau (OMWW) introduced an advanced water treatment system that incorporates ozonation and granular activated carbon (GAC) treatment into conventional treatment processes. By March 2000, all water purification plants in Osaka City were equipped with advanced water treatment facilities. This new treatment system has successfully removed odours and flavor and reduced trihalomethane. GAC treatment, the last stage of the water treatment, plays a vital role in removing organic matter in water, in conjunction with ozonation. However, GAC performance changes over time. To optimize the GAC effect, it is essential to conduct proper GAC management based on a thorough grasp of the change patterns of GAC performance. To determine GAC's water treatment capability, we analyzed data on 69 water quality items; obtained from past plant tests and chemical substance addition experiments using GAC actually used in the purification plants. Analysis revealed the deterioration patterns and time of GAC performance. By considering physical properties and economic factors as well as deterioration patterns of GAC performance, it is possible to establish an optimal GAC management system. This paper describes the findings obtained from the study on GAC water treatment performance conducted by OMWW.


Author(s):  
Xingxing Tan ◽  
Ning Zhao

A set of new treatment facilities have been built to deal with the high-concentration of fluorine and ammonia-nitrogen (NH3-N) in wastewater generated from the preparation process of UO2 powder by ADU, whose concentration reaches up to 20g/L and 70g/L, respectively. Compared with various methods and summarized from vast experiences, a three-step technological process has been adopted. Firstly, fluorine is fixed by Ca(OH)2, and the product, CaF2, and other solids are filtered by centrifuge. And the teeny solids in the primary filtrate are precipitated by proper flocculants in pipe chute settling pond. Secondly, the treated wastewater with certain alkalinity is rectified by folded-plate rectifying tower. Meanwhile the ammonia is reused. Finally, adsorbed by specific adsorbent, the fluorine and NH3-N concentration of treated wastewater is further reduced. After numerous experiments and two-year running tests, the process control has been improved. Now, the wastewater treatment capability of the facility can reach 45m3/day. And the concentration of fluorine and NH3-N in the final wastewater is less than 10mg/L and 15mg/L, respectively, which can meet the state wastewater discharge standards. Besides, the concentration of the reused ammonia is raised from 5wt% to 25wt%, and the recovery can reach 99.3%.


Author(s):  
Ye. M. Matseluk ◽  
D. V. Charnyy ◽  
V. D. Levytska ◽  
S. V. Marysyk

The current state of water quality formation in surface water bodies, which serve as sources of drinking water supply in the Dnieper river basin, was considered. The water treatment technologies currently used in Ukraine, were analyzed. The inconsistency of these technologies with the current water quality in these sources of water supply was established, as these technologies are not quite suitable for the purification of water with a significant organic component of any genesis. It was found that one of the main factors that influences the quality of water in water bodies in the warm period is phytoplankton, especially during their "flowering. The factors accompanying this phenomenon were shown, the development trends and their influence on the operating water treatment systems were analyzed. It was considered the feasibility of using reagents with the effect of oxidation of the organic component of the source water, in particular chlorine dioxide, the use of which is effective in disinfection of chlorine-resistant microbiota and phenols oxidations. Moreover, in the conditions of the expected increase in the concentration of mycocystins, chlorine dioxide can be, by analogy with ozone, a fairly effective oxidant of these toxins with a prolonged disinfection effect. The potential development areas of water treatment systems by intensifying bio-physico-chemical processes on the basis of the existing typical capacitive and package units of water treatment plants are given. The perspective areas of scientific and technological developments for substantiation of effective solutions on modernization of existing water treatment facilities were established in these conditions, namely it is reasonable to consider only those solutions, which provide effective purification of water with high concentration of phytoplankton without comprehensive or radical change of water treatment technology. That is, these approaches should make maximum use of existing treatment facilities, either by their reconstruction, or with the use of new reagents, or a combination of both.


Author(s):  
Maria Y. Savostyanova ◽  
◽  
Lidia А. Norina ◽  
Arina V. Nikolaeva ◽  
◽  
...  

Retaining of water resources quality is one of the global ecological problems of the modern time. The most promising direction in solving the problem of water resources protection is the reduction of negative environmental influence of waste water from production facilities by upgrading the existing water treatment technologies. To treat utility water, technical and rain water from site facilities of Transneft system entities, the specialists developed and approved standard technological diagrams, which are used in producing treatment facilities. The standard technological diagrams provide for all necessary stages of waste water treatment ensures the reduction of pollution level to normal values. However, during operation of treatment facilities it was established, that to ensure the required quality of waste water treatment with initially high levels of pollution, the new technological solutions are necessary. The author presents the results of scientific-research work, in the context of which the best affordable technologies were identified in the area of the treatment of waste water with increased content of pollutants and non-uniform ingress pattern. On the basis of the research results the technical solutions were developed for optimization of operation of existing waste water treatment facilities by means of using combined treatment of technical and rain waters and utility waste waters and applying bioreactor with movable bed – biochips. The use of bioreactor with movable bed allows the increase in the area of active surface, which facilitates increase and retention of biomass. Biochips are completely immersed into waste waters, and biofilm is formed on the entire volume of immersion area, facilitating retention of biomass and preventing formation of sediments. Due to mixing the floating device with biofilm constantly moves along the whole area of bioreactor, and, in doing so, speeds up biochemical processes and uniformity of treatment. The advantages of a bioreactor with movable bed – its active sludge durability against increased and changing pollutant concentrations, change of waste water temperature and simplicity of application – ensured the possibility of its use for blending utility waters, technical and rain waters.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Arie Herlambang

Clean water to poor communities who live in crowded municipal area is stillexpensive and a luxury. This condition is evidenced by the number of people whouse ground water for their daily water, because water taps still seems expensivefor them. Diarrheal disease is still relatively high for Indonesia, where nearly 16thousand people suffer from diarrhea due to poor sanitation. To help the poor inthe city, there are several alternative technologies that can be applied to publicaccess to clean water and adequate low-cost, including ground water treatmenttechnology with a filter system equipped with an ultraviolet sterilizer, or ozonegenerators, or using ultrafiltration, if possible can also use the reverse osmosismembrane that for fresh water. Arsinum is the best alternative should be chosenfor fulfilled potable water in slump area.Keywords : Sanitation, water treatment technology, portable water, low-cost, slump area


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
M.C. White PE ◽  
M.J. Kosterman

At time of commissioning, the Racine, Wisconsin, USA ultrafiltration (UF) membrane treatment system fail short of meeting its operational goals concerning capacity and chemical cleaning intervals. The systematic optimization of this 189-million-litre-per-day (MLD) capacity UF system provided tangible operational benefits, which included a 30-percent reduction in power use, a 50-percent reduction in chlorine chemical use, a 36-percent reduction in citric acid use and a simultaneous 7-percent increase in net treatment capacity of the system. In addition, the optimization program reduced the level of buildup of foulants on the surface of the membranes. This paper summarizes the optimization procedures followed at Racine, discussing how similar measures may be applicable to other water treatment facilities.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2609-2612
Author(s):  
D.-Th. Kollatsch

The most important task of urban drainage and waste water treatment in the future is the environmental care of rivers and receiving waters. For this it is necessary to have a look at all discharges of sewer systems and treatment facilities. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities can be shown. With these models the efficiency of upgrading measures can be proved in all parts of urban water systems.


2021 ◽  
Vol 831 (1) ◽  
pp. 012028
Author(s):  
Zhan Liu ◽  
Meifang Yan ◽  
Yuhua Gao ◽  
Haihua Li ◽  
Na Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document