EOR Steam Injection Huff and Puff Method: An Analysis of Production Response in Low Performance Well

2021 ◽  
Author(s):  
M. Mursalim

Steam Injection Huff and Puff is one of the EOR methods by injecting heat energy in the steam phase to reduce oil viscosity and reproducing oil in the same well. The geological structure of this field is a complex-faulted anticline that compartmentalized the field into five blocks with two potential blocks for EOR Steam Injection Huff and Puff Method. The oil properties are categorized as heavy oil because of high viscosity, high pour point, high congealing point, and low API degree. Therefore, the Recovery Factor (RF) only reaches 14% with EOR method. Screening criteria is conducted for selecting well candidate with low performance. It means the well with oil temperature <110 oF and flow rate <20 BOPD. EOR Steam Injection Huff and Puff Method consists of three stages such as injection period, soaking period and production period. The steam design becomes a reference in determining the duration of each stage. The duration of EOR Steam Injection Huff and Puff Method has been estimated for a total of 20 days with 11 days for injection period and 9 days for soaking period. There are three parameters used to analyze the production response after EOR Steam Injection such as Productivity Index (PI), Inflow Performance Relationship (IPR) Curve, and Production Rate Test (PRT). These parameters show the comparison before and after EOR Steam Injection. Based on these three parameters, EOR Steam Injection Huff and Puff Method has successfully improved 76% of oil production in this well. This study concludes that there are four critical factors for the success of EOR Steam Injection using Huff and Puff Method, and will be described explicitly in this paper.

2021 ◽  
Vol 21 (2) ◽  
pp. 64-70
Author(s):  
Oksana N. Shevchenko ◽  

Recently, it is necessary to note the presence of negative dynamics in the deterioration of the reserves structure for newly discovered fields, and most of the them are classified as hard-to-recover, confined to deposits with a complex geological structure, low permeability, high oil viscosity, complicated by the presence of faults, active bottom waters and gas caps. Hard-to-recover reserves are drilled with horizontal wells. This is primarily because horizontal wells make it possible to multiply the area of fluid filtration due to the increase in the drainage area, due to the extensive contact of the horizontal well section with the rock, allowing to increase the well flow rate many times over. Summarizing the above, horizontal wells are used to develop fields with the following parameters: fields with a thin oilsaturated rim (up to 15 m), with a gas cap and bottom water; fields of heavy oil, with a viscosity of more than 30 mPa·s; fields with low reservoir permeability (less than 0.002 μm2). Under these conditions, linear Darcy’s law cannot describe fluid filtration. Under the conditions of high-viscosity oil and lowpermeability reservoir existence, a certain initial pressure gradient is determined, due to the rheological properties of the filtering fluid and high values of the surface friction coefficient. Under conditions of a thin oil rim and an increased gas factor, the limiting filtration rates due to the dissolved gas regime are observed, and a nonlinear law describes the fluid inflow. One of the main parameters in the preparation of the technical and economic assessment of the reservoir is the flow rate of each individual horizontal well. Analytical methods for calculating the horizontal well flow rate show a high error. It is proposed to take a fresh look at the problem of determining the predicted flow rate of a horizontal well, using well-known approaches for solving this issue. It is rather difficult to reliably predict the parameters of reservoir operation: the horizontal wells productivity obtained with the help of modern hydrodynamic stimulators turns out to be unreliable, which leads to the formation of an insufficiently rational development system. And the arising complications during operation in field conditions have to be eliminated due to significant volumes of material and labor resources. Thus, the development of methods that contribute to obtaining a reliable calculation of production is an urgent task for the oil industry.


Author(s):  
V. A. Sudakov ◽  
◽  
M. S. Shipaeva ◽  
D. K. Nurgaliev ◽  
Z. M. Rizvanova ◽  
...  

High-viscosity oil belong to unconventional sources of hydrocarbon raw materials, the share of which is growing every year. The development of this complex type of raw material requires modern scientific technologies in order to maintain the production of hydrocarbons at the same level. Technologies for the extraction and processing of heavy oil are different from traditional ones. First of all, these deposits are located at a shallow depth, but are classified as difficult to recover due to the complex geological structure and high anomalous oil viscosity. The objective of this work is a deeper understanding of the geochemical composition of heavy oil deposits, taking into account the peculiarities of their geological structure. This is important for the successful development of new and improvement of existing technologies for the extraction and processing of heavy oil and the implementation of the resource potential of heavy oils in the Republic of Tatarstan. Keywords: heavy oil; unconventional oil; biodegradation; GC-MS; geochemical methods.


1970 ◽  
Vol 5 (1) ◽  
pp. 77
Author(s):  
Mahadzir Ismail ◽  
Saliza Sulaiman ◽  
Hasni Abdul Rahim ◽  
Nordiana Nordin

The Financial Master Plan (2001- 2010) aims to enhance the capacity of banking industry so that higher effic iency and productivity can be reaped in the future. This study seeks to determine the impact of merger on the efficiency and productivity ofcommercial banks in Malaysia for the period 1995 until 2005. The study uses a non-parametric approach, nam ely DEA (data envelopment analysis?) to estimate the efficiency scores and to construct the Malmquist productivity index. To enable this estimation, three bank inputs and outputs are used. Amongst the findings are those banks exhibit higher efficiency score after the merger and thefo reign banks are more efficient than the local banks. Productivity of the banks is calculated in both periods, before and after the merger: The results show that, it is the local banks that have improved the most after the merger. The main source of productivity is technical change or innovation. The findings support the existing policy of having larger domestic banks in term of size.


2021 ◽  
Author(s):  
KR Kantovitz ◽  
LL Cabral ◽  
NR Carlos ◽  
AZ de Freitas ◽  
DC Peruzzo ◽  
...  

SUMMARY The aim of this in vitro study was to quantitatively evaluate the internal gap of resin composites of high-and low-viscosity used in single- and incremental-fill techniques in Class I cavities exposed to thermal cycling (TC) using optical coherence tomography (OCT). Cavities of 4-mm depth and 3-mm diameter were prepared in 36 third molars randomly distributed into four groups, according to viscosity of restorative resin-based composite (high or low viscosity, all from 3M Oral Care) and technique application (bulk or incremental fill) used (n=9): RC, high-viscosity, incremental-fill, resin-based composite (Filtek Z350 XT Universal Restorative); BF, high-viscosity, bulk-fill, resin-based composite (Filtek One Bulk Fill); LRC, low-viscosity, incremental-fill, resin-based composite (Filtek Z350 XT Flowable Universal Restorative); and LBF, low-viscosity, bulk-fill, resin-based composite (Filtek Flowable Restorative). Single Bond Universal Adhesive system (3M Oral Care) was used in all the experimental groups. The incremental-fill technique was used for RC and LRC groups (2-mm increments), and a single-layer technique was used for BF and LBF groups, as recommended by the manufacturer. The internal adaptation of the resin at all dentin walls was evaluated before and after TC (5000 cycles between 5°C and 55°C) using OCT images. Five images of each restored tooth were obtained. Images were analyzed using ImageJ software that measured the entire length of the gaps at the dentin–restoration interface. The length of gaps (μm) was analyzed using two-way repeated measures ANOVA and the Tukey tests (α=0.05). There was a significant interaction between material types and TC (p=0.006), and a significant difference among all material types (p&lt;0.0001), before and after TC (p&lt;0.0001). Increased internal gaps at the dentin–restoration interface were noticed after TC for all groups. RC presented the lowest value of internal gap before and after TC, while LBF showed the highest values of internal gap after TC. In conclusion, TC negatively affected the integrity of internal gap, whereas high-viscosity, incremental-fill, resin-based composite presented better performance in terms of internal adaptation than low-viscosity, bulk-fill materials in Class I cavities.


2018 ◽  
Vol 20 (3) ◽  
pp. 229
Author(s):  
D.U. Bodykov ◽  
T.M. Seilkhanov ◽  
M. Nazhipkyzy ◽  
A.S. Toylybayev ◽  
R. Salakhov

The methods of 1 H, 13C NMR-spectroscopy were used to study the fragmentary compositions of oil from the Karazhanbas, Zhangurshi deposits (Kazakhstan) and heavy oil residues obtained before and after the electrohydraulic effect of water hammer after topping a light fraction of oil products. Their fragmentary composition were determined by the value of integrated intensities of 1 H, 13C NMR signals of the oil under study. The obtained results have shown that the composition of oil samples understudy includes terminal CH3-groups of long alkyl chains having a value of 0.87 ppm. The presence of long alkyl chains of oil components imparts a high viscosity and bituminous consistency to the latter. The content of aromatic protons according to the integrated intensities of 1 H NMR in both oil samples does not exceed 2.08%; but there are no aromatic nuclei by the integral intensities of carbon atoms at all. The low content of protons of Hα-type in hydrocarbon crude (5.2–5.3%) indicates a low content of aromatic and carbonyl carbons as well as heteroatoms in the studied samples. The content of the greater proportion of protons of the Hγ-type in Karazhanbas oil (33.0%) compared to the Zhangurshi oil (23.8%) indicates a greater length of aliphatic hydrocarbons of the latter and its increased viscosity.


Steel Re-Rolling mill is the second most important steel forming industry in India. The manufacturing process of steel re-rolling from ingots to finished products has high energy consumption and it directly affects productivity and manufacturing cost. Measuring the productivity of the process can unleash the low productive process, which leads towards rectification for increasing the productivity of lean area. The productivity of Steel Re-Rolling mill is measured by Performance Objective – Productivity model. Key performance areas were identified by intensive survey and process of prioritization was carried out. The actual values of the Key performance Areas of the system were compared with the objectivated values of the system. The outcomes lead to Productivity Index of the system, sub-system and key performance areas of the process revealing the areas with low-performance index which have the highest impact on productivity of the process. The energy subsystem is having the lowest performance index and is the main source of loss and recommendations are made to increase the productivity of energy sub-system.


Author(s):  
Farhana Ferdousi

The aim of this study is to measure efficiency of various Microfinance Institutions (MFIs) in Bangladesh before and after introducing Microcredit Regulatory Authority (MRA) in order to capture the immediate impact of regulation. Data Envelopment Analysis (DEA) and Malmquist Productivity index technique have been used for this study. Findings reveal that 35% firms’ average productivity increase sharply after enacting microfinance regulation. Seven firms have been graduated from the inefficiency level to efficiency level. However, most of the firms among the increased efficiency list are comparatively young in terms of starting their microfinance operations. Result of Tobit regression does not find any significant relationship between efficiency and regulation. Due to regulation, only number of outreach increases but to ensure more productive growth, MRA needs to be more proactive in strengthening policy environment and educating MFIs to be better equipped with sound financial and managerial tools and techniques.


Author(s):  
Jorge Luiz Biazussi ◽  
Cristhian Porcel Estrada ◽  
William Monte Verde ◽  
Antonio Carlos Bannwart ◽  
Valdir Estevam ◽  
...  

A notable trend in the realm of oil production in harsh environments is the increasing use of Electrical Submersible Pump (ESP) systems. ESPs have even been used as an artificial-lift method for extracting high-viscosity oils in deep offshore fields. As a way of reducing workover costs, an ESP system may be installed at the well bottom or on the seabed. A critical factor, however, in deep-water production is the low temperature at the seabed. In fact, these low temperatures constitute the main source for many flow-assurance problems, such as the increase in friction losses due to high viscosity. Oil viscosity impacts pump performance, reducing the head and increasing the shaft power. This study investigates the influence of a temperature increase of ultra-heavy oil on ESP performance and the heating effect through a 10-stage ESP. Using several flow rates, tests are performed at four rotational speeds and with four viscosity levels. At each rotational speed curve, researchers keep constant the inlet temperature and viscosity. The study compares the resulting data with a simple heat model developed to estimate the oil outlet temperature as functions of ESP performance parameters. The experimental data is represented by a one-dimensional model that also simulates a 100-stage ESP. The simulations demonstrate that as the oil heat flows through the pump, the pump’s efficiency increases.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Ali Alarbah ◽  
Ezeddin Shirif ◽  
Na Jia ◽  
Hamdi Bumraiwha

Abstract Chemical-assisted enhanced oil recovery (EOR) has recently received a great deal of attention as a means of improving the efficiency of oil recovery processes. Producing heavy oil is technically difficult due to its high viscosity and high asphaltene content; therefore, novel recovery techniques are frequently tested and developed. This study contributes to general progress in this area by synthesizing an acidic Ni-Mo-based liquid catalyst (LC) and employing it to improve heavy oil recovery from sand-pack columns for the first time. To understand the mechanisms responsible for improved recovery, the effect of the LC on oil viscosity, density, interfacial tension (IFT), and saturates, aromatics, resin, and asphaltenes (SARA) were assessed. The results show that heavy oil treated with an acidic Ni-Mo-based LC has reduced viscosity and density and that the IFT of oil–water decreased by 7.69 mN/m, from 24.80 mN/m to 17.11 mN/m. These results are specific to the LC employed. The results also indicate that the presence of the LC partially upgrades the structure and group composition of the heavy oil, and sand-pack flooding results show that the LC increased the heavy oil recovery factor by 60.50% of the original oil in place (OOIP). Together, these findings demonstrate that acidic Ni-Mo-based LCs are an effective form of chemical-enhanced EOR and should be considered for wider testing and/or commercial use.


Sign in / Sign up

Export Citation Format

Share Document