scholarly journals PENGARUH TEKANAN INJEKSI BAHAN BAKAR TERHADAP KARAKTERISTIK KABUTAN CAMPURAN SOLAR DAN DIMETIL ETER

2010 ◽  
Vol 6 (2) ◽  
Author(s):  
Bambang Suwondo Rahardjo ◽  
Taufik Yuwono

Fuel spray injection plays a main role in determining the performance of dieselengines, where the spray pattern illustrates fuel combustion occurs in thecombustion chamber. Characteristics of Sauter Mean Diameter (SMD) spray isdevoted to fuel evaporation, and mixing and combustion quality affected bypressure injection (P) and the physical chemical properties of the fuel (density,surface tension, viscosity and boiling point). From fuel spray test results showedthat fuel evaporation characteristics of fuel at a certain pressure effect on engineperformance. The higher the injection pressure will reduce the diameter of thefuel sprays after injection (SMD), thus speeding up evaporation and mixingprocesses between fuel and air in the combustion chamber with resulted thecombustion process is more completelyKata kunci: characteristics of fuel spray, diesel fuel, DME.

2010 ◽  
Vol 6 (1) ◽  
Author(s):  
Taufik Yuwono ◽  
Bambang Suwondo Rahardjo

Fuel atomization plays a main role in determining the performance of dieselengines, where the spray pattern illustrates fuel combustion occurs in thecombustion chamber. From fuel spray test results showed that fuel evaporationcharacteristics of fuel at a certain pressure will effect on engine performance.The higher the injection pressure will reduce the diameter of the fuel sprays(sauter mean diameter), thus speeding up evaporation and mixing processesbetween fuel and air in the combustion chamber with resulted the combustionprocess is more completely. Analysis of fuel atomization simulations performedat injection pressure 150, 180 and 235 bar on the distribution of size,temperature and concentration of air+fuel mixture. Physical chemical parametersresulting are the size and temperature distribution patterns fuel+air mixturesprays. DME is feasible to be used as alternative fuel in diesel engines by adding2–5% lubricant additives. The use of diesel+DME 50/50 mixed fuel provides thelowest fuel consumption by generating power of 3x2,975 watts.Kata kunci: kinerja mesin, solar, DME, simulasi atomisasi, dinamika fluida


Author(s):  
Badih A. Jawad ◽  
Chris H. Riedel

The spray-tip penetrations and the drop sizes of intermittent fuel sprays were measured by using a modified pulsed optical spray sizer. The average spray tip speeds were determined from simultaneously recorded needle lift signals and obscuration traces. The speeds of a sequence of fuel pulses injected at ∼103 Hz were analyzed to elucidate penetration mechanisms. A correlation that relates penetration distance to time, pressure drop across the nozzle, fuel density, and ambient gas density was obtained. The temporal variations of drop size in penetrating pulses of sprays were measured. The concentration of drops were calculated by combining drop size and obscuration data. The Sauter mean diameter of penetrating fuel drops increased with an increase of the chamber pressure and decreased with an increase of the injection pressure.


2021 ◽  
Vol 11 (3) ◽  
pp. 1273
Author(s):  
Chen Feng ◽  
Jiping Zhou ◽  
Xiaodong Xu ◽  
Yani Jiang ◽  
Hongcan Shi ◽  
...  

In recent years, 3D printing has received increasing attention from researchers. This technology overcomes the limitations of traditional technologies by printing precise and personalized scaffold with arbitrary shapes, pore structures, and porosities for the applications in various tissues. The cellulose nanocrystal (CNC) is extracted from Humulus Japonicus (HJS) and mixed with poly(ε-caprolactone) (PCL) to prepare a series of CNC/PCL composites for printing. Based on the analysis of the physical and chemical properties of the series of the CNC/PCL composites, an optimal mass ratio of CNC to PCL was obtained. The Solidworks was used to simulate the stretching and compression process of the scaffolds with three different patterns under an external force. The flow of nutrient solution in the scaffolds with different patterns was simulated by ANSYS FLUENT, and then a new optimization scaffold pattern with a concave hexagon shape was advised based on the simulation results. Collectively, the mechanical test results of the material and scaffold confirmed that the optimal filling amount of the CNC was 5%, and the scaffold pattern with concave hexagon shape exhibited better mechanical properties and suitable for the transport of cells and nutrients, which is expected to be more widely used in 3D printing.


2019 ◽  
Vol 17 (1) ◽  
pp. 1459-1465
Author(s):  
Xuedong Feng ◽  
Jing Yi ◽  
Peng Luo

AbstractWith the purpose of studying the influence of NO/O2 on the NOx storage activity, a Pt-Ba-Ce/γ-Al2O3 catalyst was synthesized by an acid-aided sol-gel method. The physical and chemical properties of the catalyst were characterized by X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) methods. The results showed that the composition of the catalyst was well-crystallized and the crystalline size of CeO2 (111) was about 5.7 nm. The mechanism of NO and NO2 storage and NOx temperature programmed desorption (NO-TPD) experiments were investigated to evaluate the NOx storage capacity of the catalyst. Pt-Ba-Ce/γ-Al2O3 catalyst presented the supreme NOx storage performance at 350℃, and the maximum value reached to 668.8 μmol / gcat. Compared with O2-free condition, NO oxidation to NO2 by O2 had a beneficial effect on the storage performance of NOx. NO-TPD test results showed that the NOx species stored on the catalyst surface still kept relatively stable even below 350℃.


Author(s):  
Sheng Wei ◽  
Brandon Sforzo ◽  
Jerry Seitzman

In gas turbine combustors, ignition is achieved by using sparks from igniters to start a flame. The process of sparks interacting with fuel/air mixture and creating self-sustained flames is termed forced ignition. Physical and chemical properties of a liquid fuel can influence forced ignition. The physical effects manifest through processes such as droplet atomization, spray distribution, and vaporization rate. The chemical effects impact reaction rates and heat release. This study focuses on the effect of fuel composition on forced ignition of fuel sprays in a well-controlled flow with a commercial style igniter. A facility previously used to examine prevaporized, premixed liquid fuel-air mixtures is modified and employed to study forced ignition of liquid fuel sprays. In our experiments, a wall-mounted, high energy, recessed cavity discharge igniter operating at 15 Hz with average spark energy of 1.25 J is used to ignite liquid fuel spray produced by a pressure atomizer located in a uniform air coflow. The successful outcome of each ignition events is characterized by the (continued) presence of chemiluminescence 2 ms after spark discharge, as detected by a high-speed camera. The ignition probability is defined as the fraction of successful sparks at a fixed condition, with the number of events evaluated for each fuel typically in the range 600–1200. Ten fuels were tested, including standard distillate jet fuels (e.g., JP-8 and Jet-A), as well as many distillate and alternative fuel blends, technical grade n-dodecane, and surrogates composed of a small number of components. During the experiments, the air temperature is controlled at 27 C and the fuel temperature is controlled at 21 C. Experiments are conducted at a global equivalence ratio of 0.55. Results show that ignition probabilities correlate strongly to liquid fuel viscosity (presumably through droplet atomization) and vapor pressure (or recovery temperature), as smaller droplets of a more volatile fuel would lead to increased vaporization rates. This allows the kernel to transition to a self-sustained flame before entrainment reduces its temperature to a point where chemical rates are too slow. Chemical properties of the fuel showed little influence, except when the fuels had similar physical properties. This result demonstrates that physical properties of liquid fuels have dominating effects on forced ignition of liquid fuel spray in coflow air.


2021 ◽  
Vol 7 ◽  
Author(s):  
Khanh Duc Cung ◽  
Ahmed Abdul Moiz ◽  
Xiucheng Zhu ◽  
Seong-Young Lee

Advanced combustion systems that utilize different combustion modes and alternative fuels have significantly improved combustion performance and emissions compared to conventional diesel or spark-ignited combustions. As an alternative fuel, dimethyl ether (DME) has been receiving much attention as it runs effectively under low-temperature combustion (LTC) modes such as homogeneous charge compression ignition (HCCI) and reactivity control combustion ignition (RCCI). Under compression-ignition (CI), DME can be injected as liquid fuel into a hot chamber, resulting in a diesel-like spray/combustion characteristic. With its high fuel reactivity and unique chemical formula, DME ignites easily but produces almost smokeless combustion. In the current study, DME spray combustion under several different conditions of ambient temperature (Tamb = 750–1100 K), ambient density (ρamb = 14.8–30 kg/m3), oxygen concentration (O2 = 15–21%), and injection pressure (Pinj = 75–150 MPa) were studied. The results from both experiments (constant-volume combustion vessel) and numerical simulations were used to develop empirical correlations for ignition and lift-off length. Compared to diesel, the established correlation of DME shows a similar Arrhenius-type expression. Sensitivity studies show that Tamb and Pinj have a stronger effect on DME's ignition and combustion than other parameters. Finally, this study provides a simplified conceptual mechanism of DME reacting spray under high reactivity ambient (high Tamb, high O2) and LTC conditions. Finally, this paper discusses engine operating strategies using a non-conventional fuel such as DME with different reactivity and chemical properties.


The effect of Nano charcoal ash (NCA) from coconut shell on the physical and chemical properties of bitumen as alternative binder was evaluated in this study. Six different Nano grades of charcoal ash were examined. The charcoal ash ground for the optimum grinding time had a median particle size of 148 nm. NCA dosage of 30% by weight of binder was used throughout the experiments. Nanoparticle size analysis and X-ray fluorescence were performed to determine the size and chemical properties of material. Dynamic shear rheometer, penetration, softening point, and penetration index were used to characterize the physical properties of NCA. Thirty hours of grinding time produced the optimum NCA, which could enhance the binder performance. Test results indicated that adding NCA from coconut shell to bitumen improved the binder stiffness up to 47% and significantly increased the softening point up to 12% compared with virgin binder.


Author(s):  
Mohammed El Adawy ◽  
Morgan Heikal ◽  
bin Abd. Aziz Abd. Rashid

Abstract RICARDO-VECTIS CFD simulation of the in-cylinder air flow was first validated with those of the experimental results from high-speed particle image velocimetry (PIV) measurements taking cognisant of the mid-cylinder tumble plane. Furthermore, high-speed fuel spray measurements were carried out simultaneously with the intake-generated tumble motion at high valve lift using high-speed time-resolved PIV to chronicle the spatial and time-based development of air/fuel mixture. The effect of injection pressure(32.5 and 35.0 MPa) and pressure variation across the air intake valves(150, 300 and 450 mmH2O) on the interaction process were investigated at valve lift 10 mm where the tumble vortex was fully developed and filled the whole cylinder under steady-state conditions. The PIV results illustrated that the intake generated-tumble motion had a substantial impact on the fuel spray distortion and dispersion inside the cylinder. During the onset of the injection process the tumble motion diverted the spray plume slightly towards the exhaust side before it followed completely the tumble vortex. The fuel spray plume required 7.2 ms, 6.2 ms and 5.9 ms to totally follow the in-cylinder air motion for pressure differences 150, 300 and 450 mmH2O, respectively. Despite, the spray momentum was the same for the same injection pressure, the magnitude of kinetic energy was different for different cases of pressure differences and subsequently the in-cylinder motion strength.


Sign in / Sign up

Export Citation Format

Share Document