scholarly journals MENGINTIP KONDISI CUACA PENYEBAB BANJIR BESAR DI DKI JAKARTA TANGGAL 25 OKTOBER 2010

2011 ◽  
Vol 12 (2) ◽  
pp. 43
Author(s):  
Mimin Karmini ◽  
Findy Renggono

DKI Jakarta dikejutkan dengan hujan deras pada jam 16:00 WIB. Genangan airlangsung terjadi akibat derasnya hujan. Hujan berlangsung sampai sekitar jam 20:00WIB. Dari data AWS di Jatiwaringin, curah hujan tertinggi sebesar 230 mm tercatatpada jam 16:00 WIB. Curah hujan sampai jam 19:00 WIB tercatat sebesar 650.60 mmatau intensitas 216.87 mm/jam untuk periode jam 16:00 s.d. 19:00 WIB. Beberapaindeks stabilitas, yang dihitung dari data rawinsonde jam 07:00 WIB, menunjukanpotensi terjadinya aktivitas konvektif yang bisa menghasilkan hujan deras. Beberapaindeks stabilitas yang menunjukan potensi terjadinya proses konvektif kuat adalah: LI(Lifted Index) = - 06; SI (Showalter Index) = - 0.7; K Index = 36.7; TT (Total Totals) =43.9. Kejadian hujan paling deras di kawasan barat DKI Jakarta sampai Tangerang.Genangan air hampir merata di DKI Jakarta dan Tangerang dengan ketinggian yangbervariasi antara 20 cm – 100 cm.Jakarta was struck by torrential rain at 16:00 pm. Standing water caused by heavy rainoccured immediately. The rain lasted until around 20:00 pm. From the AWS measurement at Jatiwaringin, highest rainfall of 230 mm was recorded at 16:00 pm. Rainfall amount until 19:00 pm was recorded of about 650.60 mm, in other words rainfall intensity was about 216.87 mm/hour for the period of 16:00 – 19:00 pm. Some stability indices, which is calculated from rawinsonde at 07:00 am showed the potential for convective activity which could produce heavy rain. Some stability indices that show strong potential for convective process are: LI (Lifted Index) = - 06; SI (Showalter Index) = - 0.7; K Index = 36.7; TT (Total Totals) = 43.9. The heaviest rainfall occured in the western region of Jakarta until Tangerang. Stagnant water is almost evenly in Jakarta and Tangerang with varying heights between 20 cm - 100 cm.

2011 ◽  
Vol 347-353 ◽  
pp. 2302-2307 ◽  
Author(s):  
Hong Xiang Wang ◽  
Yi Shi ◽  
Jian Ma ◽  
Cai Yan Lu ◽  
Xin Chen

A field experiment was conducted to study the characteristics of non-point source nitrogen (N) in the surface runoff from sloping croplands and the influences of rainfall and cropland slope gradient. The results showed that dissolved total N (DTN) was the major form of N in the runoff, and the proportion occupied by dissolved inorganic nitrogen (DIN) ranged from 45% to 85%. The level of NH4+-N was generally higher than the level of NO3--N, and averaged at 2.50 mg·L-1and 1.07 mg·L-1respectively. DIN was positively correlated with DTN (R2=0.962). Dissolved organic N (DON) presented a moderate seasonal change and averaged at 1.40 mg·L-1. Rainfall amount and rainfall intensity significantly affected the components of DTN in the runoff. With the increase of rainfall amount and rainfall intensity, the concentrations of DTN, NH4+-N and NO3--N presented a decreased trend, while the concentration of DON showed an increased trend. N loss went up with an increase in the gradient of sloping cropland, and was less when the duration was longer from the time of N fertilization.fertilization.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yongliang Huang ◽  
Zhiwei Sun ◽  
Chunyan Bao ◽  
Man Huang ◽  
Anyuan Li ◽  
...  

The Xiashan landslide, which is classified as a typical basalt platform landslide, is the most massive landslide in Zhejiang Province, China. Once sliding occurs, it will pose a severe threat to the life and property of downstream residents and the nearby section of Hangzhou-Taizhou Expressway. On the basis of the geological conditions, present situation, and latest monitoring data of the landslide, this study finds that rainfall is the main influencing factor, and the creep mode is the main prediction mode of its subsequent deformation. The rainfall statistics of the landslide area in the past 30 years show that the rainfall and rainfall frequency in the landslide area display an increasing trend. The probability of heavy rain with rainfall intensity of 100–250 mm/day in the landslide area is very high. On this basis, combined with the numerical analysis method, a finite element model of the slope considering rainfall and groundwater conditions is constructed to analyze the causes and failure mechanism of this landslide comprehensively. Results indicate that the maximum tensile stress at the top of the trailing edge under the natural state is 5.10 MPa, which is very close to the saturated tensile strength of rock mass. Thus, tensile cracks are easily generated and developed, thereby causing the failure mode to be the hydraulic driving type. Also, with the increase in rainfall intensity, the slope plastic strain increases and the slope plastic zone develops and extends until it is completely penetrated. When the rainfall intensity is more than 200 mm/day, the slope safety factor is close to unity, and the slope approaches a failure condition. Therefore, the landslide should be controlled through water treatment and integrated with engineering measures.


2019 ◽  
Vol 67 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Lei Su ◽  
Zongqiang Xie ◽  
Wenting Xu ◽  
Changming Zhao

Abstract Mixed evergreen-deciduous broadleaved forest is the transitional type of evergreen broadleaved forest and deciduous broadleaved forest, and plays a unique eco-hydrologic role in terrestrial ecosystem. We investigated the spatio-temporal patterns of throughfall volume of the forest type in Shennongjia, central China. The results indicated that throughfall represented 84.8% of gross rainfall in the forest. The mean CV (coefficient of variation) of throughfall was 27.27%. Inter-event variability in stand-scale throughfall generation can be substantially altered due to changes in rainfall characteristics, throughfall CV decreased with increasing rainfall amount and intensity, and reached a quasi-constant level when rainfall amount reached 25 mm or rainfall intensity reached 2 mm h−1. During the leafed period, the spatial pattern of throughfall was highly temporal stable, which may result in spatial heterogeneity of soil moisture.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2268
Author(s):  
Wenbin Ding ◽  
Fei Wang ◽  
Kai Jin ◽  
Jianqiao Han ◽  
Qiang Yu ◽  
...  

The magnitude and spatiotemporal distribution of precipitation are the main drivers of hydrologic and agricultural processes in soil moisture, runoff generation, soil erosion, vegetation growth and agriculture activities on the Loess Plateau (LP). This study detects the spatiotemporal variations of individual rainfall events during a rainy season (RS) from May to September based on the hourly precipitation data measured at 87 stations on the LP from 1983 to 2012. The incidence and contribution rates were calculated for all classes of rainfall duration and intensity to identify the dominant contribution to the rainfall amount and frequency variations. The trend rates of regional mean annual total rainfall amount (ATR) and annual mean rainfall intensity (ARI) were 0.43 mm/year and 0.002 mm/h/year in the RS for 1983–2012, respectively. However, the regional mean annual total rainfall frequency (ARF) and rainfall events (ATE) were −0.27 h/year and −0.11 times/year, respectively. In terms of spatial patterns, an increase in ATR appeared in most areas except for the southwest, while the ARI increased throughout the study region, with particularly higher values in the northwest and southeast. Areas of decreasing ARF occurred mainly in the northwest and central south of the LP, while ATE was found in most areas except for the northeast. Short-duration (≤6 h) and light rainfall events occurred mostly on the LP, accounting for 69.89% and 72.48% of total rainfall events, respectively. Long-duration (≥7 h) and moderate rainfall events contributed to the total rainfall amount by 70.64% and 66.73% of the total rainfall amount, respectively. Rainfall frequency contributed the most to the variations of rainfall amount for light and moderate rainfall events, while rainfall intensity played an important role in heavy rainfall and rainstorms. The variation in rainfall frequency for moderate rainfall, heavy rainfall, and rainstorms is mainly affected by rainfall duration, while rainfall event was identified as a critical factor for light rainfall. The characteristics in rainfall variations on the Loess Plateau revealed in this study can provide useful information for sustainable water resources management and plans.


Author(s):  
Jijian Lian ◽  
Junling He ◽  
Fang Liu ◽  
Danjie Ran ◽  
Xiaoqun Wang ◽  
...  

Flood discharge atomization is a serious challenge that threatens the daily lives of the residents around the dam area as well as the safety of the water conservancy project. This research aims to improve the prediction accuracy of the stochastic splash model. A physical model test with four types of flip bucket is conducted to obtain the hydraulic parameters of the impinging outer edge of the water jet, the relationship of the splashing droplet diameter with its corresponding velocity, and the spatial distribution of the downstream nappe wind. The factors mentioned above are introduced to formulate the empirical model. The rule obtained from the numerical analyses is compared with the results of the physical model test and the prototype observations, which yields a solid agreement. The numerical results indicate that the powerhouse is no longer in the heavy rain area when adopting the flip bucket whose curved surface is attached to the left wall. The rainfall intensity of the powerhouse is significantly weaker than that of other types under the designed condition, so we choose it as the recommended bucket type. Meanwhile, we compare the rainfall intensity distribution of the original bucket and the recommended bucket under different discharge which rates ranging from 150.71 to 1094.9 m3/s. It is found that the powerhouse and the owner camp are no longer in the heavy rain area under all of the working conditions. Finally, it is shown that the atomization influence during the flood discharge can be reduced by using the recommended bucket.


2019 ◽  
Vol 34 (5) ◽  
pp. 1277-1293 ◽  
Author(s):  
Hwan-Jin Song ◽  
Byunghwan Lim ◽  
Sangwon Joo

Abstract Heavy rainfall events account for most socioeconomic damages caused by natural disasters in South Korea. However, the microphysical understanding of heavy rain is still lacking, leading to uncertainties in quantitative rainfall prediction. This study is aimed at evaluating rainfall forecasts in the Local Data Assimilation and Prediction System (LDAPS), a high-resolution configuration of the Unified Model over the Korean Peninsula. The rainfall of LDAPS forecasts was evaluated with observations based on two types of heavy rain events classified from K-means clustering for the relationship between surface rainfall intensity and cloud-top height. LDAPS forecasts were characterized by more heavy rain cases with high cloud-top heights (cold-type heavy rain) in contrast to observations showing frequent moderate-intensity rain systems with relatively lower cloud-top heights (warm-type heavy rain) over South Korea. The observed cold-type and warm-type events accounted for 32.7% and 67.3% of total rainfall, whereas LDAPS forecasts accounted for 65.3% and 34.7%, respectively. This indicates severe overestimation and underestimation of total rainfall for the cold-type and warm-type forecast events, respectively. The overestimation of cold-type heavy rainfall was mainly due to its frequent occurrence, whereas the underestimation of warm-type heavy rainfall was affected by both its low occurrence and weak intensity. The rainfall forecast skill for the warm-type events was much lower than for the cold-type events, due to the lower rainfall intensity and smaller rain area of the warm-type. Therefore, cloud parameterizations for warm-type heavy rain should be improved to enhance rainfall forecasts over the Korean Peninsula.


2010 ◽  
Vol 23 (12) ◽  
pp. 3390-3396 ◽  
Author(s):  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Haoming Chen

Abstract Using hourly station rain gauge data during 1966–2005, the authors studied changes in the characteristics of the late-summer (July–August) rainfall, which has exhibited a so-called southern flooding and northern drought (SFND) pattern over eastern China in recent decades. Although the rainfall amount and frequency have significantly increased (decreased) in the mid–lower reaches of the Yangtze River valley (North China) during this period, the rainfall intensity has decreased (increased). This finding differs from previous results based on daily data, which showed that the rainfall intensity has increased in the mid–lower reaches of the Yangtze River valley. In this region, the mean rainfall hours on rainy days have increased because of the prolonged rainfall duration, which has led to an increased daily rainfall amount and to a decreased hourly rainfall intensity. Results also show that the SFND pattern is mostly attributed to changes in precipitation with moderate and low intensity (≤10 mm h−1), which contributes 65% (96%) of rainfall amount to the “flooding” (“drought”) in the mid–lower reaches of the Yangtze River valley. Neither frequency nor amount of strong intensity (>20 mm h−1) rainfall exhibits the SFND pattern.


2019 ◽  
Vol 14 (9) ◽  
pp. 1236-1244
Author(s):  
Hiroko Nakajima ◽  
Kan Shimazaki ◽  
Yang Ishigaki ◽  
Akiko Miyajima ◽  
Akira Kuriyama ◽  
...  

In this study, we assumed that animated announcements that conveyed rainfall intensity of localized heavy rain and the distribution of electronic gifts to encourage rain evacuation would promote evacuation actions. If evacuation actions could be promoted through these methods, then the transmission of weather information could be improved. Therefore, we modified the features of a weather information application for smartphones, which was already widely used, and conducted a demonstrative experiment with application users who agreed to participate in order to check the validity. We analyzed users’ behaviors by transmitting information regarding the predicted start time of rain and recording the Global Positioning System coordinates of the users’ smartphones. In addition, a questionnaire survey was administered to the users after the experiment to collect data on their conception of rainfall intensity. The participants were also interviewed. The results of the experiment showed a significant difference in user conception of rainfall intensity depending on whether they had viewed the animation. However, a behavior analysis based on location data showed no statistical bias in the relationship between the animation and rain evacuation behavior.


2021 ◽  
Vol 5 (2) ◽  
pp. 124-130
Author(s):  
Rahmat Gernowo ◽  
Muhamad Irham Nurwidyanto

Indonesia's climate classification is divided into three rainfall patterns. The three patterns are Seasonal Pattern, Equatorial Pattern, and Local Pattern (Anti Seasonal). Flood Disaster Management based on extreme rainfall is very much needed, as the analysis was taken as a case study on January 22, 2019, a flood disaster occurred in South Sulawesi. The flood event indicated that there was heavy rain that flushed the South Sulawesi region for several days, which is classified as monsoonal rainfall. This study aims to analyze the characteristics of heavy rain with atmospheric anomalies during these events by calculating rainfall intensity to determine future flooding patterns and using the WRF model to analyze cloud distribution patterns and rainfall distribution. The method used in this research is Mononobe and Weather Research and Forecasting (WRF) using the Fabric Fritsch cumulus parameterization scheme. The analysis showed that the intensity and duration of rainfall of 2, 5 10, 25, and 50 years were obtained from the Mononobe model, as well as from the atmospheric dynamics data, there was rain for 3 consecutive days caused by cumulonimbus type rain clouds. Based on the WRF model, it can be seen that the CAPE value before the onset of rain is quite significant, thus supporting the growth of rain clouds as an important variable in flood disaster management in the South Sulawesi region in particular and the tropical zone in. general. Motivation/Background: Indonesia is included in a tropical climate where extreme rainfall is important to analyze. The majority of flood disasters in the tropics occur in decades of extreme atmosphere, this is an important reason in this study. Method: The Mononobe method can be used to calculate the distribution pattern of rainfall intensity throughout 2, 5, 10, 25, and 50 years, as a prediction of future rainfall intensity patterns. The WRF model is used to calculate the cloud distribution pattern and the spatial distribution of rainfall. Results: The results of this study obtained patterns of rainfall intensity and duration of 2, 5, 10, 25, and 50 years from the Mononobe model, as well as from the atmospheric dynamics data, there was rain for 3 consecutive days caused by cumulonimbus rain clouds. The pattern of cloud distribution and rainfall at the time of the incident at the WRF model research location. Conclusions: Analysis of the distribution pattern of rainfall intensity for the periods of 2, 5, 10, 25, and 50 years, as well as the distribution pattern of clouds and rainfall, is very necessary for disaster identification, especially hydrometeorology. This is very important as a variable in flood disaster management, especially in the tropics


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1084
Author(s):  
Victor Nnamdi Dike ◽  
Zhao-Hui Lin ◽  
Chikwem Coleman Ibe

Rainfall extremes can cause a significant loss of lives and economic losses in Nigeria. This study aims to investigate the trends of summer rainfall extremes over Nigeria with daily station datasets from 1975 to 2013. Using the rainfall extreme indices recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), it is found that regionally averaged summer total wet-day rainfall amount (PRCPTOT), maximum consecutive 5-day rainfall amount (RX5day), and wet-day rainfall intensity (SDII) have increased in the three climatic regions of Nigeria namely Guinea coast, Sub-Sahel, and the Sahel regions. Meanwhile, heavy rainfall days (R20mm) increased significantly over the Guinea coast and sub-Sahel regions, while the wet-day frequency (RR1) only increased slightly. The increase in PRCPTOT over the two regions is mainly resulting from the increasing intensity and frequency of rainfall extremes. However, the Nigerian Sahel is characterized by a decreasing wet-day frequency, which demonstrates that a large proportion of the increasing PRCPTOT in the region is more associated with intense rainfall than its frequency. These characteristic increasing trends of rainfall extremes may explain the frequent flood events over Nigeria and as such this study may give guidance to stakeholders on how best to cope with it in the future.


Sign in / Sign up

Export Citation Format

Share Document