Irregular compositional zoning in garnets from metasomatised high-temperature peridotites from the Jagersfontein kimberlite pipe

2013 ◽  
Vol 77 (1) ◽  
pp. 117-136 ◽  
Author(s):  
B. M. Saumur ◽  
K. Hattori

AbstractFerritchromite is rarely reported in forearc mantle peridotites. This contribution describes ferritchromite alteration and zoned Cr-spinel in serpentinites from the Rio San Juan Complex in the Dominican Republic. These rocks originated from the forearc mantle and protruded along lithosphere-scale faults in the mid Eocene. The cores of the Cr-spinel grains have Cr# ratios [i.e.atomic Cr/(Cr + Al)] between 0.48 and 0.66; such values are relatively high and are considered to represent primary compositions. Relatively high Zn contents in the grain cores (0.46 c 0.95 wt.% ZnO) are also thought to be primary; they reflect exceptionally cool conditions in the northern Caribbean forearc mantle. A progressive change in the zoning of Cr-spinel is recorded in the samples. Weakly zoned grains of Cr-spinel have rims with lower Mg# ratios [i.e.atomic Mg/(Mg + Fe2+)] and slightly higher Cr# ratios than the cores. More strongly zoned grains of Cr-spinel, in addition to low Mg# and high Cr# in their rims, have a marked increase in Fe3+# [i.e.Fe3+/(Fe3+ + Al + Cr)] of up to 0.35 in their rims and are partially coated by Mg-rich chlorite. All grains show core-to-rim decreases in their Zn content and increases in Ti, Mn and V. The association with Mg-rich chlorite and the compositional zoning are reminiscent of those reported for ferritchromite. Ferritchromite (with Fe3+# >0.5) is common in ultramafic rocks in amphibolite-grade terranes; however, the serpentinite samples described herein show little evidence of high-grade metamorphism. The lowtemperature serpentine-group mineral lizardite is dominant and high-temperature antigorite is either very rare or absent; other high-temperature minerals, such as talc, tremolite and cummingtonite, are trace constituents. The observed zoning in the Cr-spinel is thought to represent 'immature' ferritchromite, probably formed in response to a short-lived thermal event. This event appears to have been on too short a timescale to produce either proper ferritchromite or significant quantities of high-temperature minerals. It may be related to the emplacement of the nearby Rio Boba Intrusion, or the upward protrusion of the serpentinites along the lithosphere-scale Septentrional fault zone from the base of the mantle wedge through its hotter interior. We suggest that such alteration is rare in forearc serpentinites because they are not commonly heated during exhumation along the plane of subduction. This work demonstrates that Cr-spinel compositions can be modified by relatively low-grade metamorphism.


Author(s):  
Igor Victorovich Ashchepkov ◽  
Svetlana Anatolievna Babushkina ◽  
Nikolai Sergeevich Mevedev ◽  
Oleg Borisovich Oleinikov

In the subcratonic mantle beneath Leningrad pipe, West Ukukit field, Yakutia garnet thermoba-rometry give division to 7 horizons (paleosubduction slabs). Cr-bearing amphiboles >500 reveal a broad range changing from Cr- pargasitic hornblendes to pargasites, edinites, kataforites, К-richterites with increasing pressure determined with new amphibole thermobarometer. Cr-hornblendes compiles the high-temperature branch from 3.5 GPa to Moho for basaltic melt. Amphiboles in the middle eddinites and high-pressure interval reveal different PT ranges from 35 to 40 mw/m2. Richterites near the lithosphere base both trace low –T and convective branches. The amphiboles reveal the 9 geochemical groups. The low-temperature varieties reveal Eu minima and U, Ba, Sr peaks high LILE, Sr, Rb and troughs in Nb, Pb. While high –T varieties have no Eu dips and reveal higher HFSE. Clinopyroxenes and garnets show variable trace ele-ment patterns and divisions in groups eth the plume and subduction signs. The contrasting be-haviour of Ta and Nb is regulated by the rutile partition coefficients likely for primary eclogites. Subduction and Na and K (siliceous) types of fluids percolated through the mantle with abun-dant eclogites causing amphibolization at the different levels of the mantle column. The plume melts produced hybridism and more smooth trace element patterns in reacted minerals, clino-pyroxene. monomineral thermobarometry.


2022 ◽  
pp. 85-108
Author(s):  
Vladimir Cherenkov ◽  
Viktoria Kornilova ◽  
Yulia Golubeva ◽  
Marina Gerasimova

The Vilyui-Markhinsky dike belt (VMDB), which was formed as a result of Devonian rifting on the eastern margin of the Siberian Platform, is the marginal part (area of scattered rifting) of the Vilyui paleorift structure. The Nakyn field is located in the central part of the belt, but is controlled by an independent system of NNE-trending tectonic faults. The belt dyke intrudes the Nyurbinskaya kimberlite pipe. On their contact, specific breccias were formed resulting from the interaction between degassing products of basic magma with kimberlites. The typical zonality of the dyke endocontact indicates a later dyke introduction. Dolerite dikes thermally metamorphosed breccias in which high-temperature neoplasms of andradite, Al-lizardite, and clinochrysotile were generated. VMDB basites represent a single association, in which two series of rocks are distinguished: moderate-titanium (TiO2 ~ 2.5 wt. %) with normal alkalinity and low P2O5 content, and high-titanium (TiO2 ~ 4.4 wt. %), occasionally with moderate alkalinity. The differences in the dike composition are insignificant and are the result of natural variations in the composition of individual bodies. 40Ar/39Ar dating of the VMDB basites, the method characterized by the best results convergence, shows that they formed in a narrow timeframe corresponding to the Upper Frasnian – Famenian stage of the Upper Devonian (368.5 to 376.3 Ma). The location of the Nakyn field basites and kimberlites is controlled by faults of various types, orientation and age. Kimberlites formed first, and VMDB intrusions followed.


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
J. L. Farrant ◽  
J. D. McLean

For electron microscope techniques such as ferritin-labeled antibody staining it would be advantageous to have available a simple means of thin sectioning biological material without subjecting it to lipid solvents, impregnation with plastic monomers and their subsequent polymerization. With this aim in view we have re-examined the use of protein as an embedding medium. Gelatin which has been used in the past is not very satisfactory both because of its fibrous nature and the high temperature necessary to keep its solutions fluid. We have found that globular proteins such as the serum and egg albumins can be cross-linked so as to yield blocks which are suitable for ultrathin sectioning.


Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


Sign in / Sign up

Export Citation Format

Share Document