scholarly journals Efektivitas Fluoroquinolon Terhadap Isolat Bakteri Saluran Pencernaan Ular Sanca Batik (Python reticulatus)

2013 ◽  
Vol 1 (1) ◽  
pp. 27-31
Author(s):  
Agustina Dwi Wijayanti ◽  
Antasiswa Windraningtyas Rosetyadewi ◽  
Tri Untari

Telah dilakukan penelitian tentang efektivitas antibiotika golongan fluoroquinolon (flumequin dan enrofloksasin) terhadap Salmonella dan E. coli yang diisolasi dari saluran pencernaan ular sanca batik (Python reticulatus). Penelitian ini bertujuan untuk mengetahui efektivitas fluoroquinolon terhadap infeksi saluran pencernaan pada ular dan reptil pada umumnya. Penelitian dilakukan dengan menggunakan 8 ekor sanca batik dewasa yang menderita gangguan pencernaan dengan lesi klinis berupa mouthrot. Sampel ulas kloaka dan mulut serta sampel darah diambil dari semua ular, untuk selanjutnya dilakukan uji mikrobiologis berupa isolasi dan identifikasi bakteri melalui media Brilliant Green Agar (BGA), Mc Conkay Agar (MCA), Triple Sugar Iron (TSI) dan media biakan murni. Isolat murni yang didapatkan adalah Salmonella spp. dan E. coli dan selanjutnya dilakukan uji sensitivitas bakteri terhadap flumequin dan enrofloksasin serta penentuan Minimum Inhibitory Concentration (MIC) untuk enrofloksasin. Hasilnya adalah kedua antibiotika efektif terhadap Salmonella dan intermediet terhadap E. coli. Nilai MIC enrofloksasin terhadap Salmonella adalah 2,5 μg/ml.

Author(s):  
Phan Vu Hai ◽  
Hoang Thi Hong Van ◽  
Nguyen Van Chao ◽  
Nguyen Dinh Thuy Khuong ◽  
Thuong Thi Thanh Le ◽  
...  

The chives and ginger’s bulbs were extracted by ethanol 96%, 72%, 48% within 5, 10 and 15 days for each concentration (15, 30 and 45 days in total, respectively). The solidified extract then was used for antibacterial activity against E. coli and Salmonella spp. isolated from fecal of chickens with diarrhoea. The results showed that both ginger and chive, which socked and leached for greater than 30 days gave better antibacterial ability. Extracts diluted at concentrations of 5 µg/µl, 7.5 µg/µl and 10 µg/µl of ginger and chive bulbs are resistant to both bacteria. Compared with antibiotics, E. coli was resistant to amoxicillin, whereas Salmonella spp. was resistant to gentamicin and amoxicillin. The minimum inhibitory concentration (MIC) of chives extract (30 days) was 16-63 (31-125) mg/ml and ginger extract (30 days) was 16-80 (2-4) mg/ml; overall, the results indicated that both extract had bacteriostatic/bactericidal effects on E. coli and Salmonella spp.


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdulkader Masri ◽  
Naveed Ahmed Khan ◽  
Muhammad Zarul Hanifah Md Zoqratt ◽  
Qasim Ayub ◽  
Ayaz Anwar ◽  
...  

Abstract Backgrounds Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. Results 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. Conclusions The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


2021 ◽  
Author(s):  
li li jiang ◽  
Su Xu ◽  
Haitao Yu ◽  
Qi Cui ◽  
Rui Cao

Abstract In this study, graphene oxide (GO) was first prepared by the modified Hummer method. Then, the GO/trichloroisocyanuric acid (TCCA) composite was prepared by loading TCCA into GO with the blending method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy were used to characterize the composite. The results showed that TCCA was successfully loaded on the surface of GO or intercalated among GO layers. Next, the antibacterial performance of the composite against Escherichia coli and Staphylococcus aureus was tested by the 96-well plate assay. A bactericidal kinetic curve, bacterial inhibition tests, and the mechanism of bacterial inhibition is discussed. The results showed that the minimum inhibitory concentration of the GO/TCCA composite (GO:TCCA ratio = 1:50) was 327.5 µg/mL against E. coli and 655 µg/mL against S. aureus. At the minimum inhibitory concentration, the inhibition rate of the GO/TCCA composite exceeded 99.46% against E. coli and 99.17% against S. aureus. The bactericidal kinetic curves indicate that the GO/TCCA composite has an excellent bactericidal effect against E. coli and S. aureus.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Wen-Jung Lu ◽  
Hsuan-Ju Lin ◽  
Pang-Hung Hsu ◽  
Hong-Ting Victor Lin

Multidrug efflux pumps play an essential role in antibiotic resistance. The conventional methods, including minimum inhibitory concentration and fluorescent assays, to monitor transporter efflux activity might have some drawbacks, such as indirect evidence or interference from color molecules. In this study, MALDI-TOF MS use was explored for monitoring drug efflux by a multidrug transporter, and the results were compared for validation with the data from conventional methods. Minimum inhibitory concentration was used first to evaluate the activity of Escherichia coli drug transporter AcrB, and this analysis showed that the E. coli overexpressing AcrB exhibited elevated resistance to various antibiotics and dyes. Fluorescence-based studies indicated that AcrB in E. coli could decrease the accumulation of intracellular dyes and display various efflux rate constants for different dyes, suggesting AcrB’s efflux activity. The MALDI-TOF MS analysis parameters were optimized to maintain a detection accuracy for AcrB’s substrates; furthermore, the MS data showed that E. coli overexpressing AcrB led to increased ions abundancy of various dyes and drugs in the extracellular space at different rates over time, illustrating continuous substrate efflux by AcrB. This study concluded that MALDI-TOF MS is a reliable method that can rapidly determine the drug pump efflux activity for various substrates.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3830
Author(s):  
Hong Le ◽  
Quynh Do ◽  
Mai Doan ◽  
Quyen Vu ◽  
Mai Nguyen ◽  
...  

Marine microorganisms are an invaluable source of novel active secondary metabolites possessing various biological activities. In this study, the extraction and isolation of the marine sediment Penicillium species collected in Vietnam yielded ten secondary metabolites, including sporogen AO-1 (1), 3-indolecarbaldehyde (2), 2-[(5-methyl-1,4-dioxan-2-yl)methoxy]ethanol (3), 2-[(2R-hydroxypropanoyl)amino]benzamide (4), 4-hydroxybenzandehyde (5), chrysogine (6), 3-acetyl-4-hydroxycinnoline (7), acid 1H-indole-3-acetic (8), cyclo (Tyr-Trp) (9), and 2’,3’-dihydrosorbicillin (10). Their structures were identified by the analysis of 1D and 2D NMR data. Among the isolated compounds, 2-[(5-methyl-1,4-dioxan-2-yl)methoxy]ethanol (3) showed a strong inhibitory effect against Enterococcus faecalis with a minimum inhibitory concentration value of 32 µg/mL. Both 2-[(2R-hydroxypropanoyl)amino]benzamide (4) and 4-hydroxybenzandehyde (5) selectively inhibited E. coli with minimum inhibitory concentration values of 16 and 8 µg/mL, respectively. 2’,3’-Dihydrosorbicillin (10) potentially inhibited α-glucosidase activity at a concentration of 2.0 mM (66.31%).


Author(s):  
Ashish Srivastava ◽  
D. B. Mondal

The study was conducted to investigate the antibacterial efficacy against enteropathogenic E. coli of plants commonly used to treat calf-diarrhoea. Methanolic extracts of six plants (Aegle marmelos, Curcuma longa, Dalbergia sissoo, Mangifera indica, Psidium guajava and Punica granatum) were screened for their antibacterial property against enteropathogenic E. coli by standard disc diffusion method. Minimum inhibitory concentration (MIC) and of the extract exhibiting highest antibacterial activity was estimated by broth dilution method and minimum bactericidal concentration (MBC) was measured by streaking the contents of MIC tubes on nutrient agar plates. Among the six extracts tested, only extracts of Curcuma longa, Psidium guajava and Punica granatum exhibited antibacterial activity against E. coli. Out of these three, Punica granatum extract was found to be most effective with a mean inhibition zone of 14.67±0.577 mm followed by Psidium guajava (9.67±0.577 mm) and Curcuma longa (8.67±0.577 mm), produced by the disc containing 8.00 mg of respective extract. Minimum inhibitory concentration and minimum bactericidal concentration of the Punica granatum extract were estimated to be 02.00 mg/mL and 03.00 mg/mL respectively. These findings suggest that methanolic extracts of Curcuma longa, Psidium guajava and Punica granatum possess antibacterial activity against enteropathogenic E.coli


DICP ◽  
1989 ◽  
Vol 23 (6) ◽  
pp. 456-460
Author(s):  
Michael N. Dudley ◽  
Hilary D. Mandler ◽  
Kenneth H. Mayer ◽  
Stephen H. Zinner

Serum inhibitory and bactericidal titers were measured in nine healthy volunteers following single iv doses of ciprofloxacin 100, 150, and 200 mg. The median peak serum bactericidal titer (5 minutes following completion of a 30-minute infusion) against two highly susceptible strains of Escherichia coli ranged between 1:64 and 1:1024 and titers exceeded 1:8 for six hours for all dose levels. The bactericidal titers against two strains of Pseudomonas aeruginosa and a methicillin-resistant strain of Staphylococcus aureus were considerably lower, the median peak being 1:2 at all dose levels. Measured inhibitory and bactericidal titers at five minutes and one hour postinfusion were significantly greater than those predicted (measured serum ciprofloxacin concentration to minimum inhibitory concentration [MIC] or minimum bactericidal concentration [MBC]) for only one strain of E. coli. Intravenous doses of ciprofloxacin 100–200 mg produce high and sustained serum bactericidal titers against highly susceptible bacteria; considerably lower levels of activity are seen against bacteria having higher MICs and MBCs but still considered susceptible to the drug.


2018 ◽  
Vol 20 (87) ◽  
pp. 65-69
Author(s):  
R.A. Peleno

The data of the influence of active substances of anthelmintic and antiprotozoal preparations on the growth of L. casei IMB B-7280 and E. coli 055K59 are provided in the article. Their minimal inhibitory concentrations were determined for these strains of microorganisms and the active substances with which possible simultaneous application of probiotic strain L. casei IMB В-7280 is established. With this aim, the effect on the growth of L. casei IMB B-7280 and E. coli 055K59 and the minimum inhibitory concentration of fenbendazole, levamisole and ivermectin, which are part of the anthelmintic preparations and amprolium, tylosin, sodium sulfadimexone and sodium sulfatyazole, which are active substances of antiprotozoal drugs, were investigated. The determination of the minimum inhibitory concentration of the active substances of antiparasitic agents against these strains of microorganisms was carried out in in vitro experiments by serial dilutions in a dense MRS environment and MPA, and a study of the effect on the growth by diffusion method, followed by measurement of growth retardation zones in millimeters. It is established that among active substances of anthelmintic preparations only phenbendazole caused growth retardation and only relative to L. casei IMB B-7280. Among the active substances of antiprotozoal drugs, sodium sulfatyazole was the most active, which inhibited growth as L. casei IMB-7280 and E. coli 055K59 № 3912/41. Thylosin was effective only in relation to L. casei IMB B-7280 and at the highest concentration of 0.03%, the growth retardation zone was 23.4 ± 0.92 mm. Sodium sulfadimetoxin caused the growth retardation of L. сasei IMB В-7280 only at the highest concentration. The minimum inhibitory concentration of active substances of anti-parasitic drugs was different for strains L. casei IMB B-7280 and E. coli 055K59 № 3912/4. The strongest inhibitory effect was shown by tylosin, which stopped the growth of L. casei IMB B-7280 and E. coli 055K59 № 3912/41 respectively at concentrations of 0.00125 and 50.0 mg/ml. Active substances such as amprolium, levamisole and ivermectin did not significantly inhibit the growth of L. casei, IMB B-7280 and E. coli 055K59 № 3912/41, since their minimal inhibitory concentration was in the range of 4000 to 6000 mg ml.


Sign in / Sign up

Export Citation Format

Share Document