scholarly journals An Integrated Switch in a HV-SOI Wafer Technology, With a Novel Self-Protection Mechanism

2010 ◽  
Vol 5 (1) ◽  
pp. 7-15
Author(s):  
Matías Miguez ◽  
Joel Gak ◽  
Alfredo Arnaud

An integrated switch to control electrical stimuli in implantable medical devices is presented. First a self-biased protection mechanism to avoid VGS reaching maximum rated value is presented. Then, using a HV-CMOS technology this technique is incorporated in a fully integrated switch, to control 0 to 16V, and 0 to 30 mA, pulses for implantable stimulators. Because of the low supply voltage VDD between 2 to 5V, and safety considerations in implantable devices, special level shifters, drivers, and a voltage multiplier, that drive a large 40000μm/3μm dual-in-series PMOS switch, were necessary for the circuit. The circuit was fabricated in a HV 0.6μm CMOS technology in SOI wafer for transistor isolation, and tested. Measurement results that closely fit the expected performance of the circuit are presented.

2014 ◽  
Vol 23 (01) ◽  
pp. 1450004 ◽  
Author(s):  
XIAOBO XUE ◽  
XIAOLEI ZHU ◽  
QIFENG SHI ◽  
LENIAN HE

In this paper, a 12-bit current-steering digital-to-analog converter (DAC) employing a deglitching technique is proposed. The deglitching technique is realized by lowering the voltage swing of the control signal as well as by using a method of glitch counteraction (GC). A new switch–driver structure is designed to enable the effectiveness of the GC and provide sufficient driving capability under a low supply voltage. Moreover, the control signal's rise/fall asymmetry which increases the glitch error can be suppressed by using the proposed switch–driver structure. The 12-bit DAC is implemented in 180 nm CMOS technology. The measurement results show that the spurious free dynamic range (SFDR) at low signal frequency is 78.8 dB, and it is higher than 70 dB up to 60 MHz signal frequency at 400 MS/s. The measured INL and DNL are both less than ±0.6 LSB.


Author(s):  
Gianluca Cornetta ◽  
David J. Santos ◽  
José Manuel Vázquez

The modern wireless communication industry is demanding transceivers with a high integration level operating in the gigahertz frequency range. This, in turn, has prompted intense research in the area of monolithic passive devices. Modern fabrication processes now provide the capability to integrate onto a silicon substrate inductors and capacitors, enabling a broad range of new applications. Inductors and capacitors are the core elements of many circuits, including low-noise amplifiers, power amplifiers, baluns, mixers, and oscillators, as well as fully-integrated matching networks. While the behavior and the modeling of integrated capacitors are well understood, the design of an integrated inductor is still a challenging task since its magnetic behavior is hard to predict accurately. As the operating frequency approaches the gigahertz range, device nonlinearities, coupling effects, and skin effect dominate, making difficult the design of critical parameters such as the self-resonant frequency, the quality factor, and self and mutual inductances. However, despite the parasitic effects and the low quality-factor, integrated inductors still allow for the implementation of integrated circuits with improved performances under low supply voltage. In this chapter, the authors review the technology behind monolithic capacitors and inductors on silicon substrate for high-frequency applications, with major emphasis on physical implementation and modeling.


2014 ◽  
Vol 17 (1) ◽  
pp. 62-70
Author(s):  
Khanh Trung Le ◽  
Tu Trong Bui ◽  
Hung Duc Le ◽  
Kha Cong Pham

In the paper, we present a design of a low voltage Operation Amplifier (OPAMP) circuit using split-length transistors. Indirect feedback compensation is an advanced technique used to stabilize the operation of an OPAMP. Cascode transistors are usually implemented for indirect feedback systems. However, these transistors are not suitable for low voltage design. In this study, we have taken advantage of split-length transistors and indirect feedback compensation technique to design a high performance OPAMP. As a result, the OPAMP operates not only at low supply voltage but also at high frequency. The OPAMP has been designed and fabricated in a 0.18um CMOS technology. This OPAMP achieves 100 dB gain, 90 MHz unity gain frequency and 60 degrees phase margin at 2 V supply voltage.


2017 ◽  
Vol 26 (08) ◽  
pp. 1740003 ◽  
Author(s):  
Daniel Arbet ◽  
Viera Stopjaková ◽  
Martin Kováč ◽  
Lukáš Nagy ◽  
Matej Rakús ◽  
...  

In this paper, a variable gain amplifier (VGA) designed in 130 nm CMOS technology is presented. The proposed amplifier is based on the bulk-driven (BD) design approach, which brings a possibility to operate with low supply voltage. Since the supply voltage of only 0.6 V is used for the amplifier to operate, there is no risk of latch-up event that usually represents the main drawback of the BD circuit systems. BD transistors are employed in the input differential stage, which makes it possible to operate in rail-to-rail input voltage range. Achieved simulation results indicate that gain of the proposed VGA can be varied in a wide scale, which together with the low supply voltage feature make the proposed amplifier useful for low-voltage and low-power applications. An additional circuit responsible for maintaining the linear-in-decibel gain dependency of the VGA is also addressed. The proposed circuit block avails arbitrary shaping of the curve characterizing the gain versus the controlling voltage dependency.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350053 ◽  
Author(s):  
S. REKHA ◽  
T. LAXMINIDHI

This paper presents an active-RC continuous time filter in 0.18 μm standard CMOS technology intended to operate on a very low supply voltage of 0.5 V. The filter designed, has a 5th order Chebyshev low pass response with a bandwidth of 477 kHz and 1-dB passband ripple. A low-power operational transconductance amplifier (OTA) is designed which makes the filter realizable. The OTA uses bulk-driven input transistors and feed-forward compensation in order to increase the Dynamic Range and Unity Gain Bandwidth, respectively. The paper also presents an equivalent circuit of the OTA and explains how the filter can be modeled using descriptor state-space equations which will be used for design centering the filter in the presence of parasitics. The designed filter offers a dynamic range of 51.3 dB while consuming a power of 237 μW.


Author(s):  
Jetsdaporn Satansup ◽  
Worapong Tangsrirat

A circuit technique for designing a compact low-voltage current-mode multiplier/divider circuit in CMOS technology is presented.  It is based on the use of a compact current quadratic cell able to operate at low supply voltage.  The proposed circuit is designed and simulated for implementing in TSMC 0.25-m CMOS technology with a single supply voltage of 1.5 V.  Simulation results using PSPICE, accurately agreement with theoretical ones, have been provided, and also demonstrate a maximum linearity error of 1.5%, a THD less than 2% at 100 MHz, a total power consumption of 508 W, and -3dB small-signal frequency of about 245 MHz.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650066 ◽  
Author(s):  
Pantre Kompitaya ◽  
Khanittha Kaewdang

A current-mode CMOS true RMS-to-DC (RMS: root-mean-square) converter with very low voltage and low power is proposed in this paper. The design techniques are based on the implicit computation and translinear principle by using CMOS transistors that operate in the weak inversion region. The circuit can operate for two-quadrant input current with wide input dynamic range (0.4–500[Formula: see text]nA) with an error of less than 1%. Furthermore, its features are very low supply voltage (0.8[Formula: see text]V), very low power consumption ([Formula: see text]0.2[Formula: see text]nW) and low circuit complexity that is suitable for integrated circuits (ICs). The proposed circuit is designed using standard 0.18[Formula: see text][Formula: see text]m CMOS technology and the HSPICE simulation results show the high performance of the circuit and confirm the validity of the proposed design technique.


2005 ◽  
Vol 3 ◽  
pp. 299-303
Author(s):  
E. Di Gioia ◽  
C. Hermann ◽  
H. Klar

Abstract. The subject of this work is a low noise amplifier (LNA), operating in the frequency range 1.8-2.1GHz. The CMOS 0.13μm technology is used in respect to the low cost of the final device. Among the specifications, a variable gain and an adjustable working frequency are required. In particular, four different working modes are provided: 1.8, 1.9 and 2.1GHz high gain and 2.1GHz low gain. The amplifier is designed to be used as first stage of a receiver for mobile telephony. For this reason low power consumption is taken into consideration (low supply voltage and low drain currents). A simple digital circuit, integrated on-chip, is used to select the operating mode of the LNA by means of two input pins. A Noise figure of 1dB is obtained with a supply voltage of 0.8V.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 30 ◽  
Author(s):  
Bala Dastagiri Nadhindla ◽  
K Hari Kishore

This brief presents a 10kS/s 14 bit 12.5 ENOB Successive Approximation Register Analog-to- Digital Converter for Cardiac Implantable Medical. For achieving power efficient operation, SAR ADC employ SAR control, a new power and noise efficient comparator topology, non- binary weighted capacitive DAC. The linearity of implemented SAR ADC is enhanced with the uniform geometry of non-binary weighted capacitive DAC.The proposed SAR ADC is implemented using 65nm CMOS technology. The latched comparator consumes a power of 2.4uW and it provides an ENOB of 12.6 at a supply voltage of 1V.The INL is between -2.7/+1.6 LSB and DNL is between -0.6/+1.4LSB. The FOM of ADC is 40fJ/conv. Step which is comparable with existing ADC topologies.


2017 ◽  
Vol 27 (03) ◽  
pp. 1850047
Author(s):  
Xin Zhang ◽  
Chunhua Wang ◽  
Yichuang Sun ◽  
Haijun Peng

This paper presents a high linearity and low power Low-Noise Amplifier (LNA) for Ultra-Wideband (UWB) receivers based on CHRT 0.18[Formula: see text][Formula: see text]m Complementary Metal-Oxide-Semiconductor (CMOS) technology. In this work, the folded topology is adopted in order to reduce the supply voltage and power consumption. Moreover, a band-pass LC filter is embedded in the folded-cascode circuit to extend bandwidth. The transconductance nonlinearity has a great impact on the whole LNA linearity performance under a low supply voltage. A post-distortion (PD) technique employing an auxiliary transistor is applied in the transconductance stage to improve the linearity. The post-layout simulation results indicate that the proposed LNA achieves a maximum power gain of 12.8[Formula: see text]dB. The input and output reflection coefficients both are lower than [Formula: see text][Formula: see text]dB over 2.5–11.5[Formula: see text]GHz. The input third-order intercept point (IIP3) is 5.6[Formula: see text]dBm at 8[Formula: see text]GHz and the noise figure (NF) is lower than 4.0[Formula: see text]dB. The LNA consumes 5.4[Formula: see text]mW power under a 1[Formula: see text]V supply voltage.


Sign in / Sign up

Export Citation Format

Share Document