scholarly journals The process of obtaining quartz sand size fraction -0.4 + 0.05 mm for use in water glass production

10.30544/406 ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 59-68
Author(s):  
Slavica R. Mihajlović ◽  
Živko T. Sekulić ◽  
Marina S. Blagojev ◽  
Miroslav R. Ignjatović

The paper presents the process of quartz sand processing from the „Bijela Stijena“-Skočić deposit in the plant „Kesogradnja d.o.o.“ at Kozluk near Zvornik, Republic of Srpska. Bearing in mind the fact that this quartz sand is used for water glass production in the company „Birač“ - Zvornik or „Alumina“ Zvornik, it was necessary to meet the quality requirements prescribed by that industrial production. Thus, the required size was -0.4+0.05 mm and the Fe2O3 content was maximum of 0.04%. Based on the laboratory tests, a technological scheme for the quartz raw material valorization was conceived in the separation of the company „Kesogradnja d.o.o.“. The obtained results showed that quartz sand for water glass size fraction -0.4+0.05 mm could be obtained in the plant. Also, by introducing a magnetic concentration after washing and grading, the Fe2O3 content was reduced from 0.131% as it is in the initial sample to 0.038% which meets the required conditions from the water glass producers.

2019 ◽  
Vol 73 (4) ◽  
pp. 265-274
Author(s):  
Slavica Mihajlovic ◽  
Zivko Sekulic ◽  
Jovica Stojanovic ◽  
Vladan Kasic ◽  
Iroslav Sokic ◽  
...  

Quality of raw materials, including quartz sand and quartzite, varies from one deposit to another. Furthermore, the material quality determines in which industrial branches it can be used after certain preparation processes. Potential applications of quartz raw materials are: in the construction and refractory industry, ceramics and glass industry, then in metallurgy, foundry and also in production of water treatment filters. Geological investigations of the central Serbia region, in the Rekovac municipality, resulted in identification of occurrence of quartz sand ("Ursula") and quartzite ("Velika Krusevica"). Preliminary laboratory tests and characterization of the quartz sand size fraction -0.63+0.1 mm confirmed the possibility of applying this size fraction in the construction materials industry, while the quartzite can be used in refractory, glass and metallurgy industries. After determining the geological reserve of quartz sand "Ursula" and quartzite "Velika Krusevica", detailed investigations are required. Quality conditions from the aspect of chemical composition and physical properties of quartz sand and quartzite are mostly clearly defined by a special standard for this purpose. On the other hand, there are also application areas where standards does not exist, but users define their quality conditions. This example is with the application of quartz sand in the production of water glass. Chemical composition as well is not always the determining factor for the application of quartz raw material. For example, for quartz sand used for sandblasting, grain form is essential. From the economic analysis point of view, the prices of quartz raw materials vary depending on their chemical and physical properties. After all, what needs to be pointed out is the fact that these raw materials are very widespread in nature and that their exploitation is quite simple. After the raw material is excavated, it is stored and further sieved, washed, dried and processed according to customer requirements. All of these processes are cheaper than preparing, for example, limestone, and significaly cheaper than preparation of metal ores.


2018 ◽  
Vol 931 ◽  
pp. 628-633 ◽  
Author(s):  
Sergey V. Fedosov ◽  
Maxim O. Bakanov ◽  
Sergey N. Nikishov

The work considers mathematical models describing thermal processes in the framework of thermal processing of raw material mixture for cellular glass sponging. It is shown that the existing models do not completely reflect the physical processes occurring in the technology of cellular glass production. It is noted that kinetics of cell formation in cellular glass is a promising trend for improving the cellular glass technology.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 444 ◽  
Author(s):  
Pavlína Hájková

This work describes the role of chemical composition and curing conditions in geopolymer strength, leachability of chemical elements and porosity. The study focuses on geopolymer material prepared from calcined kaolinite claystone, which is not studied frequently as a raw material for geopolymer production, although it has a high application potential as it is easily commercially available and allows preparation of geopolymers with low viscosity. The composition of geopolymers and their curing methods were selected considering their ease of use in the praxis. Therefore, the potassium water glass itself was used as alkali activator without any KOH or NaOH addition. Chemical composition was changed only by the density of water glass in the range of 1.2 to 1.6 g·cm−3. Geopolymers were cured at a temperature within the range of 5 °C–70 °C to speed up the solidification process as well as by microwave radiation. High compressive strengths were obtained for geopolymers with the highest densities of the water glass (1.5 and 1.6 g·cm−3) in dependence on various curing conditions. Higher strengths were achieved in the case of samples where the solidification was not accelerated. The samples cured at lower temperatures (5 °C) showed lower porosity compared to the other curing types. The lowest leachability of Si and alkalis was reached for the samples with water glass density 1.5 g·cm−3.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 819
Author(s):  
Pura Alfonso ◽  
Oriol Tomasa ◽  
Luis Miguel Domenech ◽  
Maite Garcia-Valles ◽  
Salvador Martinez ◽  
...  

Tailings from the Osor fluorite mines release large amounts of potentially toxic elements into the environment. This work is a proposal to remove these waste materials and use them as a raw material in the manufacture of glass. The chemical composition of the tailings was determined by X-ray fluorescence and the mineralogy by X-ray diffraction. Waste materials have SiO2, Al2O3 and CaO contents suitable for a glass production, but Na as NaCO3 has to be added. Two glass formulations, with 80–90% of the residue and 10–20% Na2CO3, have been produced. The crystallization temperatures, obtained by differential thermal analysis, were 875 and 901 °C, and the melting temperatures were 1220 and 1215 °C for the G80-20 and G90-10 glasses, respectively. The transition temperatures of glass were 637 and 628 °C. The crystalline phases formed in the thermal treatment to produce devitrification were nepheline, plagioclase and diopside in the G80-20 glass, and plagioclase and akermanite-gehlenite in the G90-10 glass. The temperatures for the fixed viscosity points, the working temperatures and the coefficient of expansion were obtained. The chemical stability of the glass was tested and results indicate that the potentially toxic elements of the tailings were incorporated into the glass structure.


2016 ◽  
Vol 42 (15) ◽  
pp. 16571-16578 ◽  
Author(s):  
А.I. Ivanets ◽  
Т.А. Azarova ◽  
V.E. Agabekov ◽  
S.М. Azarov ◽  
Ch. Batsukh ◽  
...  

2021 ◽  
Vol 1035 ◽  
pp. 1102-1108
Author(s):  
Yi Ling Wu ◽  
Xian Zheng Gong ◽  
Yu Liu ◽  
Xiao Qing Li ◽  
Xiao Fei Tian ◽  
...  

The ISO14046 water footprint evaluation method was used in this study to calculate the water shortage footprint and water degradation footprint in plate glass production, in order to improve the water efficiency and management level in the production process of plate glass in China. A certain enterprise in Hebei province was selected for investigation in 2018. The results show that the water shortage footprint generated by the production of flat glass was 0.435 m3H2Oeq/weight box. The proportion at raw material production stage was the largest, being 86%, so the water consumption control in raw material mining and the circulating water system should be strengthened and improved to reduce the fresh water consumption. Water degradation footprint in flat glass industry mainly consisted of eutrophication and acidification footprints. The eutrophication footprint was calculated as 0.027 kgNO3-eq/weight box, and water acidification footprint was 0.271 kgSO2eq/weight box. The largest proportion occurred at flat glass production stage. It should be paid attention at this stage, to update the relatively clean production equipments and add the waste gas processing steps to reduce pollution discharge.


2018 ◽  
Vol 777 ◽  
pp. 564-568 ◽  
Author(s):  
Long He ◽  
Jin Shi Li ◽  
Mei Hua Chen ◽  
Yan Yang ◽  
Xin Peng Lou ◽  
...  

A high-performance quartz sand insulation brick was prepared by using low grade quartz sand under different sintering process conditions. The optimum sintering process conditions were obtained by analyzing the relationship between microstructure and sintering process. Through the compounding, pulping, forming, drying and sintering processes, and the performance test of the porous brick, the following conclusions can be drawn, the comprehensive performance in all aspects, the porosity is similar, the preferred high compressive strength conditions, in order to get a best The bonding point, brick body sintering temperature of 1150 °C, porosity of 74.56%, compressive strength of 2.1 MPa of porous brick, and the pores are smooth, more uniform distribution. With the prolonging of the holding time, the porosity of the porous brick is reduced, and the performance is 1h, the porosity is 77.22% and the compressive strength is 2.05 MPa. When the raw material ratio is 60% quartz sand, 30wt% kaolin, calcium carbonate 9.6wt%, foaming agent 0.4wt%, water ratio 0.9 holding time at 1h sintering at 1150°C can get better porosity and compressive strength of the insulation brick. The porous material was sintered at 1150 °C, the content of foaming agent was 0.2wt%, the ratio of water to material was 0.9, and the compressive pressure and porosity were the better.


2018 ◽  
Vol 163 ◽  
pp. 05008
Author(s):  
Anna Skawińska

This paper presents the results of the studies carried out in the model systems and concerning the tobermorite synthesis with an addition of metahalloysite. Quartz sand and quicklime were the main raw material constituents. The mixtures in the form of slurries underwent hydrothermal treatment with an addition of metahalloysite (5%, 10%, 15%, 20% and 30%) for 4 hours and 12 hours. The resultant composites were analysed for their phase composition using X-ray powder diffraction. The microstructure was examined using the Scanning Electron Microscope. Tobermorite was the principle reaction product. When 30% metahalloysite was added to the mixture containing CaO and SiO2, the formation of katoite was found.


2019 ◽  
Vol 78 (3) ◽  
Author(s):  
S. S. Pathirage ◽  
P. V. A. Hemalal ◽  
L. P. S. Rohitha ◽  
N. P. Ratnayake

2019 ◽  
Vol 9 (1) ◽  
pp. 367-373 ◽  
Author(s):  
Katarzyna Komisarczyk ◽  
Przemyław Czapik ◽  
Kamila Komisarczyk

AbstractThe challenge related to waste management has become a serious worldwide environmental problem. Highly sustainable solutions, which do not involve reworking the material and are based on waste utilization, are sought. Such waste as used casting compounds, which so far has been used, among others, in construction, road construction, mining and cement production. Descriptions of the use of various waste moulding compounds, such as waste quartz compounds with water glass, quartz chamotte and quartz bentonite can be found in the literature. Due to the high content of quartz and low toxicity of bentonite sandmix, an attempt was done to use them for the production of sand-lime products.The aim of this article is to determine the suitability of the waste material as a substitute for quartz sand in the production of sand-lime products. The usability of waste was determined by laboratory tests of physicochemical characteristics of the finished silicates. Sand, which is a carrier of silica, was replaced with used moulding compounds with fractions up to 0.5 mm, in the weight amounts of 5.5, 11 and 16.5%. Applying up to 11% of used casting materials as a substitute for quartz sand with a lime content of 5.5% in the raw material mixture has a clearly positive effect on compressive strength. However, the higher share of sand substitution in the mixture weakens the mechanical features of the obtained materials. The absorptivity of the finished products increases with the increase of the inserted additions’ amounts. The influence of significant amounts of casting compound additives on the microstructure of calcium-silicate products was studied as well. It was stated, that they affect the location of the tobermorite in the volume of the autoclaved material.


Sign in / Sign up

Export Citation Format

Share Document