scholarly journals Investigation of the Mechanical Properties of Flexible Polyether Foam Filled with Eggshell and Groundnut Husk Powder

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Pauline Uchechukwu Ofora ◽  
Rosemary Arinze ◽  
Pauline Uchechukwu Chris-Okafor

The study investigated the effect of eggshell and groundnut husk as fillers on flexible polyether foam. The fillers with the mesh sizes of 50µm respectively were mixed in the ratio of 50-50. Varying percentages of the mixed fillers ranging from 10%, 20%, 30%, 40% and 50% were incorporated into the polyether recipes in the appropriate foam formulations and foam samples were produced. The unfilled foam (0%filler) served as the standard control sample. The physico-mechanical test carried out on the foam showed increase in the properties such as density, compression set test, indentation hardness test, tensile strength test and decrease for elongation at break test as compared to the unfilled foam. The scanning electron microscopy result showed the cell sizes became smaller and concentrated with an irregular shape as the filler load increased, thereby making it denser and thicker. Eggshell and groundnut husk can be used in the production of flexible polyether foam since they are organic materials. They can enhance the mechanical properties and biodegradability of polyurethane product. The use of fillers in polymer composite will help in sanitizing the environment by reducing landfills and producing eco-friendly waste and also it influences cost positively. 

2017 ◽  
Vol 735 ◽  
pp. 153-157
Author(s):  
Wasinee Pinpat ◽  
Wirunya Keawwattana ◽  
Siree Tangbunsuk

Silica has been used as reinforcing filler in natural rubber for a period of time as it results in excellent properties for NR vulcanizes. Rice husk ash (RHA), bagasse ash (BA), and oil palm ash (OPA) obtained from agricultural wastes are mainly composed of silica in the percentage of 80.00%, 57.33%, and 40.20% by weight, respectively. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at fixed silica content at 35 parts per hundred of rubber (phr) were investigated. The results indicated that ashes showed greater cure time compared to that of the silica. The incorporation of ashes into natural rubber gradually improved compression set but significantly decreased tensile strength, elongation at break, and resilience. Moreover, young's modulus increased, while hardness showed no significant change with the addition of ashes. Overall results indicated that ashes could be used as cheaper fillers for natural rubber materials where improved mechanical properties were not critical.


2019 ◽  
Vol 131 ◽  
pp. 01127
Author(s):  
Wen Wen Yu ◽  
Jian Gao Shi ◽  
Yong Li Liu ◽  
Lei Wang

Ultra-high molecular weight polyethylene (UHMWPE) and graphene (GR) was melt compounded by reactive extrusion. Nanocomposite monofilaments were prepared by melt spinning through a co-rotating screw extruder and drawing at hot water. GR/UHMWPE nanocomposite ropes were twisted using nanocomposite monofilaments. A structure and mechanical properties of the GR/UHMWPE nanocomposite monofilaments and its ropes had been characterized by scanning electron microscopy (SEM), and mechanical test. Results showed that the monofilaments surface of monofilaments became rougher with introducing of GR nanosheets, which could be related to stacking of GR. The breaking load of GR/UHMWPE nanocomposite ropes was remarkably improved upon nanofiller addition, with the decrease of the elongation at break.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1178-1186
Author(s):  
Raad S. Ahmed Adnan

This study examines the effect of Sn additions on Cu-14%Al-4.5%Ni shape memory alloy. Sn was added in three different percentages (0.3,1,3) %. The alloys were mechanically tested both in compression test and micro hardness test. Also, a thermo-mechanical test was performed on the alloys. Results showed an increase in the transformation temperature outside the domain and also a better recovery strain with the increase of Sn percentage of 3% Sn addition showed the best results in mechanical properties while the 3% Sn showed a better Shape Memory Properties near to super elastic.


Author(s):  
Sabah A. Salman ◽  
Nabeel A. Bakr ◽  
Huda T. Homad

The effect of Sodium Iodide (NaI) salt on mechanical properties of polyvinyl alcohol (PVA) was studied in this work. The interaction between (NaI) salt and polymer (PVA) was investigated by (FTIR) spectroscopy. The effect of (NaI) salt on the mechanical properties of the polymer (PVA) was studied by hardness and tensile tests. FTIR spectra analysis of pure and (NaI) filled (PVA) films showed that the vibrational modes have changed due to the effect of filler salt in the polymer (PVA). Hardness test showed that the hardness increases unsystematically with increasing the weight ratio of added sodium iodide salt except the weight ratio of (16 wt %) compared with pure (PVA) film, while the experimental results of the tensile test for (PVA-NaI) composite films showed unsystematic change of tensile strength, elongation at break and Young's modulus after filling with different weight ratios of (NaI) salt compared with pure (PVA) film.


2022 ◽  
Vol 58 (4) ◽  
pp. 171-178
Author(s):  
Elangovan Kasi ◽  
Mohan Ramakrishnan

The usage of seals in several applications like aircraft engines is mostly made of Fluorocarbon (FKM) elastomer. They are coloured products that enable easier identification based on the applications. In such seals, fillers like carbon black cannot be added to reinforce and improvise the mechanical properties since carbon black does not make it possible to add colours. The properties after ageing are also very critical in sealing application, and they must also be improved. Also, Nanocomposites are the modern and growing trends in the field of polymers that show enormous changes in the properties of the polymers without affecting their basic properties. So, the need for improvisation of FKM seals and the concept of Nanocomposites can be merged to form FKM Nanocomposites with Nano clay and Nano silica as the fillers. The objective of this project is to improve the mechanical properties, better retention of properties after ageing and after fluid interaction of the FKM seals with the aid of Nanofillers. Different proportions of FKM nanocomposites were prepared using modified Nano Kaolin Clay & modified Montmorillonite clay (Cloisite grades). Various mechanical properties like tensile strength, tensile modulus, elongation at break, compression set and tear strength etc., were studied. The test results have shown good improvements while increasing the filler loading. This is helpful to manufacture seals of desired colours thereby avoiding the difficulties faced in the carbon black-filled FKM compounds.


2016 ◽  
Vol 699 ◽  
pp. 86-90
Author(s):  
David Manas ◽  
Miroslav Manas ◽  
Martin Ovsik ◽  
Michal Stanek ◽  
Pavel Stoklasek ◽  
...  

The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) polymers were proved. The use of low doses of beta radiation for polypropylene and its influence on the changes of micro, macro mechanical properties was thoroughly studied. The specimens of polypropylene were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using WAXS and instrumented nano hardness test. The results of the measurements showed considerable increase in mechanical properties (indentation hardness, indentation elastic modulus) when the beta radiation are used.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Irawan Malik ◽  
Moch Yunus ◽  
Soegeng Witjahjo ◽  
Romli Romli

Provision of spare parts for production equipment needs to be prepared with specifications, number of needs and correct time of availability, and especially for critical machining components that require correct and appropriate tactics so as not to disrupt its continuity of production. However, it is not a secret for a production department to make replacement parts that have the same mechanical properties through hardness testing of components that have failed. Through a computer program with an algorithm that is able to read a photo as a result of an indentation emphasis on hardness test, it can be known quickly a roundness diameter and calculate its hardness value which will be converted into one of the mechanical properties of a material so that a profile projector is not needed. Core of this implementation of our community service program is through an assignment scheme for employees of PT. Sri Trang Lingga Palembang, located on road TPA 2, RT. 26, RW. 29, Keramasan Subdistrict, Kertapati, Palembang City, South Sumatra, postal code 30149 is how to provide theoretical and experimental knowledge of the implementation of hardness tests on metal materials by emphasizing use of computer algorithms in reading photos of indentation hardness test results as an alternative to replacement use profile projector tool that is usually used for students of D-IV Mechanical Engineering Production and Maintenance (TMPP) Department of Mechanical Engineering Sriwijaya State Polytechnic to determine size of the indentation diameter emphasis from Brinnel hardness test.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6045-6060
Author(s):  
Zafirah Zainal Abidin ◽  
Siti Nur Liyana Mamauod ◽  
Siti Salina Sarkawi ◽  
Nurshamimi Shahirah Binti Saimi

This research aimed to elucidate the effect of black and non-black filler systems on the cure characteristics and mechanical properties of butyl reclaimed rubber (BRR). In this study, BRR800 was the BRR investigated. Since reclaimed rubber is not entirely 100% rubber, actually being a mixture of rubber, carbon black, oil, zinc oxide, stearic acid and other compounding ingredients used in the original compounds, the reclaimed rubber content in each system was fixed at 161 parts per hundred (pphr). Each mixture was mixed using a two-roll mill. The fillers used in this study were carbon black and calcium carbonate. The Mooney viscosity, cure characteristics, crosslink density, and mechanical properties, such as hardness, abrasion resistance, compression set, tear strength, rebound resilience, and the tensile properties of the vulcanizates were investigated. The results showed that the Mooney viscosity of BRR800 filled with carbon black was increased effectively and had a faster curing time and higher crosslink density than BRR filled with calcium carbonate. In addition, except for compression set and elongation at break, the mechanical properties of BRR800 with a black filler system were higher than those of BRR800 with a non-black filler system.


Author(s):  
Haris Wahyudi ◽  
Swandya Eka Pratiwi ◽  
Irwan Firdaus

Ejector pin in the mould is used to release (eject) the finished product, to vent gas out of the cavity and to expedite the material flow. It must have high strength, good hardness, good wear and corrosion resistance to withstand high pressure. Poor ejector pin may result in defect of finished product and delay the process due to additional time was required to release sticking product in the mould. The aim of this research is to select proper material for the ejector pin and analyse it not to experience plastic deformation. Three specimens’ steel was considered for making the pin, SUS 304, normal SKS 3 and heat treated SKS 3. Hardness and tensile test were used to examine the mechanical properties of specimens and impact was utilized to obtain impact energy using Charpy method. Static stress analysis was also used to simulate the working load using SolidWorks.  Rockwell hardness test recorded that SUS 304, normal SKS 3 and heat treated SKS have 23.2 HRC 9.6 HRC and 38.03 HRC, respectively. Tensile test produced yield strength of 452.9 MPa for SUS 304 and 432.6 MPa for SKS 3. Impact energy absorbed during Charpy test for SUS 304 equal to 0,804 J/ mm2 and specimen SKS 3 equal to 0,863 J/mm2. By taking the mechanical test result and SolidWorks simulation, it was concluded that the suitable material for ejector pin is SUS 304.


Sign in / Sign up

Export Citation Format

Share Document