scholarly journals Overview of nanogel and its applications

2021 ◽  
Vol 16 (1) ◽  
pp. 040-061
Author(s):  
Shailesh D Ghaywat ◽  
Pooja S Mate ◽  
Yogesh M Parsutkar ◽  
Ashwini D Chandimeshram ◽  
Milind J Umekar

Nanogel have emerged as a versatile drug delivery system for encapsulation of guest molecules. A nanoparticle which is composed of hydrophilic polymer network known as Nanogel having range from 100-200nm. Nanogel have swellable and degradation properties with high drug loading capacity, high stability, sustained and targetable manner, large surface area. Therefore, nanogel are more productive than conventional and micro-sized delivery. In recent year in the field of biotechnology nanogel were prominently used to deal with genetics, enzyme immobilization and protein synthesis. Moreover, it has productive asset for the development of novel therapeutic system in medicine. These are soft materials capable of holding small molecular biomacromolecules, therapeutics, and inorganic nanoparticles within their crosslinked networks, which allows them to find applications for therapy as well as imaging of a variety of disease conditions. These properties not only enhance the functionality of the carrier system but also help in overcoming many challenges associated with the delivery of cargo molecules. This review aims to highlight the distinct and unique capabilities of nanogels as carrier system, Synthesis of nanogels, Types of Physical and chemical crosslinked nanogels, Stimuli responsive behavior, In vivo behavior, Therapeutic drug carrier, marketed formulation of Nanogels and the last part of review summarizes the applications of nanogels in various diseases. Transdermal drug delivery, diabetes, anti-inflammatory, vaginal drug delivery, neurodegenerative diseases, ocular dieses, autoimmune disease, and anticancer treatment for specially targeting the cancer cells, thereby reducing uptake into healthy cells. This nanogel drug delivery is a phenomenal system, and further depth study is required to explore their interaction at cellular and molecular levels and minimize the challenges.

2021 ◽  
Vol 27 ◽  
Author(s):  
Mayank Handa ◽  
Ajit Singh ◽  
S.J.S. Flora ◽  
Rahul Shukla

Background: Recent past decades have reported emerging of polymeric nanoparticles as a promising technique for controlled and targeted drug delivery. As nanocarriers, they have high drug loading and delivery to the specific site or targeted cells with an advantage of no drug leakage within en route and unloading of a drug in a sustained fashion at the site. These stimuli-responsive systems are functionalized in dendrimers, metallic nanoparticles, polymeric nanoparticles, liposomal nanoparticles, quantum dots. Purpose of Review: The authors reviewed the potential of smart stimuli-responsive carriers for therapeutic application and their behavior in external or internal stimuli like pH, temperature, redox, light, and magnet. These stimuli-responsive drug delivery systems behave differently in In vitro and In vivo drug release patterns. Stimuli-responsive nanosystems include both hydrophilic and hydrophobic systems. This review highlights the recent development of the physical properties and their application in specific drug delivery. Conclusion: The stimuli (smart, intelligent, programmed) drug delivery systems provide site-specific drug delivery with potential therapy for cancer, neurodegenerative, lifestyle disorders. As development and innovation, the stimuli-responsive based nanocarriers are moving at a fast pace and huge demand for biocompatible and biodegradable responsive polymers for effective and safe delivery.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1183
Author(s):  
Mantosh Kumar Satapathy ◽  
Ting-Lin Yen ◽  
Jing-Shiun Jan ◽  
Ruei-Dun Tang ◽  
Jia-Yi Wang ◽  
...  

The blood–brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ozge Esim ◽  
Canan Hascicek

: Currently, despite many active compounds have been introduced to the treatment, cancer remains one of the most vital causes of mortality and reduced quality of life. Conventional cancer treatments may have undesirable consequences due to the continuously differentiating, dynamic and heterogeneous nature of cancer. Recent advances in the field of cancer treatment have promoted the development of several novel nanoformulations. Among them, the lipid coated nanosized drug delivery systems have gained an increasing attention by the researchers in this field owing to the attractive properties such as high stability and biocompatibility, prolonged circulation time, high drug loading capacity and superior in vivo efficacy. They possess the advantages of both the liposomes and polymeric nanoparticles which makes them a chosen one in the field of drug delivery and targeting. Core-shell type lipid-coated nanoparticle systems, which provide the most prominent advantages of both liposomes such as biocompatibility and polymeric/inorganic nanoparticles such as mechanic properties, offer a new approach to cancer treatment. This review discusses design and production procedures used to prepare lipid-coated nanoparticle drug delivery systems, their advantages and multifunctional role in cancer therapy and diagnosis, as well as the applications they have been used in.


2018 ◽  
Vol 34 (3) ◽  
pp. 365-383 ◽  
Author(s):  
Sumaira Naeem ◽  
Geetha Viswanathan ◽  
Misni Bin Misran

AbstractThe advancement of research in colloidal systems has led to the increased application of this technology in more effective and targeted drug delivery. Nanotechnology enables control over functionality parameters and allows innovations in biodegradable, biocompatible, and stimuli-responsive delivery systems. The first closed bilayer phospholipid system, the liposome system, has been making steady progress over five decades of extensive research and has been efficient in achieving many desirable parameters such as remote drug loading, size-controlling measures, longer circulation half-lives, and triggered release. Liposome-mediated drug delivery has been successful in overcoming obstacles to cellular and tissue uptake of drugs with improved biodistributionin vitroandin vivo. These colloidal nanovehicles have moved on from a mere concept to clinical applications in various drug delivery systems for antifungal, antibiotic, and anticancer drugs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fadak Howaili ◽  
Ezgi Özliseli ◽  
Berrin Küçüktürkmen ◽  
Seyyede Mahboubeh Razavi ◽  
Majid Sadeghizadeh ◽  
...  

Nanogels (Ng) are crosslinked polymer-based hydrogel nanoparticles considered to be next-generation drug delivery systems due to their superior properties, including high drug loading capacity, low toxicity, and stimuli responsiveness. In this study, dually thermo-pH-responsive plasmonic nanogel (AuNP@Ng) was synthesized by grafting poly (N-isopropyl acrylamide) (PNIPAM) to chitosan (CS) in the presence of a chemical crosslinker to serve as a drug carrier system. The nanogel was further incorporated with gold nanoparticles (AuNP) to provide simultaneous drug delivery and photothermal therapy (PTT). Curcumin's (Cur) low water solubility and low bioavailability are the biggest obstacles to effective use of curcumin for anticancer therapy, and these obstacles can be overcome by utilizing an efficient delivery system. Therefore, curcumin was chosen as a model drug to be loaded into the nanogel for enhancing the anticancer efficiency, and further, its therapeutic efficiency was enhanced by PTT of the formulated AuNP@Ng. Thorough characterization of Ng based on CS and PNIPAM was conducted to confirm successful synthesis. Furthermore, photothermal properties and swelling ratio of fabricated nanoparticles were evaluated. Morphology and size measurements of nanogel were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Nanogel was found to have a hydrodynamic size of ~167 nm and exhibited sustained release of curcumin up to 72 h with dual thermo-pH responsive drug release behavior, as examined under different temperature and pH conditions. Cytocompatibility of plasmonic nanogel was evaluated on MDA-MB-231 human breast cancer and non-tumorigenic MCF 10A cell lines, and the findings indicated the nanogel formulation to be cytocompatible. Nanoparticle uptake studies showed high internalization of nanoparticles in cancer cells when compared with non-tumorigenic cells and confocal microscopy further demonstrated that AuNP@Ng were internalized into the MDA-MB-231 cancer cells via endosomal route. In vitro cytotoxicity studies revealed dose-dependent and time-dependent drug delivery of curcumin loaded AuNP@Ng/Cur. Furthermore, the developed nanoparticles showed an improved chemotherapy efficacy when irradiated with near-infrared (NIR) laser (808 nm) in vitro. This work revealed that synthesized plasmonic nanogel loaded with curcumin (AuNP@Ng/Cur) can act as stimuli-responsive nanocarriers, having potential for dual therapy i.e., delivery of hydrophobic drug and photothermal therapy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Viswanathan Karthika ◽  
Mohamad S. AlSalhi ◽  
Sandhanasamy Devanesan ◽  
Kasi Gopinath ◽  
Ayyakannu Arumugam ◽  
...  

Abstract A hybrid and straightforward nanosystem that can be used simultaneously for cancer-targeted fluorescence imaging and targeted drug delivery in vitro was reported in this study. A chitosan (CS) polymer coated with reduced graphene oxide (rGO) and implanted with Fe3O4 nanoparticles was fabricated. The fundamental physicochemical properties were confirmed via FT-IR, XRD, FE-SEM, HR-TEM, XPS, and VSM analysis. The in vivo toxicity study in zebrafish showed that the nanocomposite was not toxic. The in vitro drug loading amount was 0.448 mg/mL−1 for doxorubicin, an anticancer therapeutic, in the rGO/Fe3O4/CS nanocomposite. Furthermore, the pH-regulated release was observed using folic acid. Cellular uptake and multimodal imaging revealed the benefit of the folic acid-conjugated nanocomposite as a drug carrier, which remarkably improves the doxorubicin accumulation inside the cancer cells over-express folate receptors. The rGO/Fe3O4/CS nanocomposite showed enhanced antibiofilm and antioxidant properties compared to other materials. This study's outcomes support the use of the nanocomposite in targeted chemotherapy and the potential applications in the polymer, cosmetic, biomedical, and food industries.


2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


2020 ◽  
Vol 17 ◽  
Author(s):  
Anisha D’Souza ◽  
Ranjita Shegokar

: In recent years, SLNs and NLCs are among the popular drug delivery systems studied for delivery of lipophilic drugs. Both systems have demonstrated several beneficial properties as an ideal drug-carrier, optimal drug-loading and good long-term stability. NLCs are getting popular due to their stability advantages and possibility to load various oil components either as an active or as a matrix. This review screens types of oils used till date in combination with solid lipid to form NLCs. These oils are broadly classified in two categories: Natural oils and Essential oils. NLCs offer range advantages in drug delivery due to the formation of imperfect matrix owing to the presence of oil. The type and percentage of oil used determines optimal drug loading and stability. Literature shows that variety of oils is used in NLCs mainly as matrix, which is from natural origin, triglycerides class. On the other hand, essential oils not only serve as a matrix but as an active. In short, oil is the key ingredient in formation of NLCs, hence needs to be selected wisely as per the performance criteria expected.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1135
Author(s):  
Kristin Entzian ◽  
Achim Aigner

Conventional cancer chemotherapies often exhibit insufficient therapeutic outcomes and dose-limiting toxicity. Therefore, there is a need for novel therapeutics and formulations with higher efficacy, improved safety, and more favorable toxicological profiles. This has promoted the development of nanomedicines, including systems for drug delivery, but also for imaging and diagnostics. Nanoparticles loaded with drugs can be designed to overcome several biological barriers to improving efficiency and reducing toxicity. In addition, stimuli-responsive nanocarriers are able to release their payload on demand at the tumor tissue site, preventing premature drug loss. This review focuses on ultrasound-triggered drug delivery by nanocarriers as a versatile, cost-efficient, non-invasive technique for improving tissue specificity and tissue penetration, and for achieving high drug concentrations at their intended site of action. It highlights aspects relevant for ultrasound-mediated drug delivery, including ultrasound parameters and resulting biological effects. Then, concepts in ultrasound-mediated drug delivery are introduced and a comprehensive overview of several types of nanoparticles used for this purpose is given. This includes an in-depth compilation of the literature on the various in vivo ultrasound-responsive drug delivery systems. Finally, toxicological and safety considerations regarding ultrasound-mediated drug delivery with nanocarriers are discussed.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3589
Author(s):  
Rui Liu ◽  
Alessandro Poma

Despite the tremendous efforts made in the past decades, severe side/toxic effects and poor bioavailability still represent the main challenges that hinder the clinical translation of drug molecules. This has turned the attention of investigators towards drug delivery vehicles that provide a localized and controlled drug delivery. Molecularly imprinted polymers (MIPs) as novel and versatile drug delivery vehicles have been widely studied in recent years due to the advantages of selective recognition, enhanced drug loading, sustained release, and robustness in harsh conditions. This review highlights the design and development of strategies undertaken for MIPs used as drug delivery vehicles involving different drug delivery mechanisms, such as rate-programmed, stimuli-responsive and active targeting, published during the course of the past five years.


Sign in / Sign up

Export Citation Format

Share Document