scholarly journals Sintesis Dimerkaptoetil Adipat sebagai Bahan Baku Stabiliser Termal Polivinil Klorida berbasis Timah Organik Ester Balik

2020 ◽  
Vol 8 (2) ◽  
pp. 85-92
Author(s):  
I Dewa Gede Arsa Putrawan ◽  
Nikanor Natan ◽  
Rizal Abdan Syakuron

This research aimed to study the synthesis of dimercaptoethyl adipate as raw materials for polyvinyl chloride thermal stabilizer from mercaptoethanol and adipic acid in a batch reactor in which water as a side product was removed by azeotropic evaporation. The study was done through comparative experimental tests where the factors studied included entrainer, mercaptoethanol excess, and reactor volume. It was found that the products obtained were liquid at room condition having clarity in the 95%-99% range, sulfhydryl content in the 23.3%-24.3% range, and yield in the 83.7%-92.1% range. Clarities, sulfhydryl contents, and yields at 20% and 40% mercaptoethanol excesses were not significantly different. At 1 L and 5 L reactor volumes, sulfhydryl contents were found to be significantly different but clarities and yields were not significantly different. Both n-hexane and cyclohexane could be used as entrainers to remove water in the synthesis of dimercaptoethyl adipate. Both entrainers gave clarities and yields that are not significantly different. n-hexane resulted in sulfhydryl content which was 0.77% higher than that of cyclohexane. However, bearing in mind health factors, cyclohexane is considered to be better than n-hexane.

2020 ◽  
Vol 18 (2) ◽  
pp. 47
Author(s):  
I Dewa Gede Arsa Putrawan ◽  
Adli Azharuddin ◽  
Dendy Adityawarman ◽  
Dicka Ar Rahim

Abstrak. Merkaptoetil karboksilat merupakan bahan baku stabiliser termal polivinil klorida atau polyvinyl chloride (PVC) berbasis timah organik. Stabiliser termal perlu ditambahkan ke dalam resin PVC sebelum diekstrusi untuk mencegah kerusakan karena pengerjaan panas. Stabiliser termal PVC dari timah organik dikenal sangat efektif, khususnya untuk aplikasi PVC kaku seperti pipa dan bingkai jendela. Penelitian ini bertujuan mengevaluasi sintesis merkaptoetil karboksilat dari asam lemak dan merkapto etanol dengan variasi sumber asam lemak yang meliputi asam lemak sawit, dedak padi dan biji kapuk. Percobaan dilakukan dalam sebuah reaktor partaian (batch) dengan asam kuat sebagai katalis. Percobaan dilakukan pada temperatur 60-80°C dan ekses merkapto etanol 10%. Kinerja sintesis dievaluasi melalui pengukuran kadar gugus merkaptan dan angka asam dalam produk serta perolehan produk. Pada rentang temperatur 60-80°C, ketiga asam lemak memberikan produk dengan kadar merkaptan pada rentang 6,4-7,8%.  Temperatur 70°C merupakan temperatur terbaik karena menghasilkan produk dengan kadar merkaptan tertinggi tanpa memadat selama penyimpanan. Pada temperatur ini, produk memiliki angka asam pada rentang 11-41 mg KOH/g dan perolehan pada rentang 70-81%. Ketiga sumber asam lemak memberikan produk dengan kadar merkaptan yang mencukupi untuk dapat digunakan sebagai bahan baku stabiliser PVC. Mempertimbangkan kualitas produk dan ketersediaan di pasaran, distilat asam lemak sawit dipandang sebagai bahan baku yang paling baik. Kata kunci: asam lemak, merkaptoetil karboksilat, polivinil klorida, stabiliser termal. Abstract. Synthesis of Mercaptoethyl Carboxylate as Raw Materials for Polyvinyl Chloride Thermal Stabilizer: Variation in Fatty Acid Source. Mercaptoethyl carboxylate is a raw material for organotin-based polyvinyl chloride (PVC) thermal stabilizer. Thermal stabilizers need to be added to the PVC resin before extruded to prevent degradation due to heat treatment. Organotin PVC stabilizers are known to be very effective, especially for rigid PVC applications such as pipes and frames. This study was aimed to evaluate the synthesis of mercaptoethyl carboxylate from fatty acids and mercaptoethanol with various sources of fatty acids including palm, rice bran and kapok seed fatty acids. The experiment was carried out in a batch reactor with a strong acid as a catalyst. The experiments were conducted at 60-80°C and 10% mercapto ethanol excess. The performance of synthesis was evaluated by measuring mercaptan and acid contents and yield. In the range of 60-80°C, all three fatty acids provided products with mercaptan levels in the range of 6.4-7.8%. A temperature of 70°C is the best temperature as it gave a product with the highest mercaptan content without solidification during storage. At this temperature, the product had acid values in the range 11-41 mg KOH/g and yields in the range of 70-81%. Considering product quality and availability in the market, palm fatty acid distillate was seen as the best raw material. Keywords: fatty acid, mercaptoethyl carboxylate, polyvinyl chloride, thermal stabilizer. Graphical Abstract


2013 ◽  
Vol 641-642 ◽  
pp. 574-577 ◽  
Author(s):  
Ying Tao Li ◽  
Ling Zhou ◽  
Mao Jiang ◽  
Yu Zhang ◽  
Jun Shao

In this paper, the mechanical property experiments of concrete based on the seawater and sea sand have been carried in different raw materials preparation and different conservation environments. The results show that the early strength and late strength of concrete based on seawater and sea sand are better than concrete based on freshwater and sand. There is no significant strength decreased for concrete based on seawater and sea sand under accelerated alternating wet and dry conditions. For concrete based on seawater and sea sand mixed with admixture, the downward trend of late strength is significantly delayed, the late strength of concrete based on the seawater and sea sand mixed with slag gets the most obvious growth trend, while the late strength of seawater and sea sand concrete mixed with fly ash gets the largest increment.


2010 ◽  
Vol 123-125 ◽  
pp. 1291-1294 ◽  
Author(s):  
Bin Lü ◽  
Jian Zhong Ma ◽  
Dang Ge Gao ◽  
Lei Hong

Modified rapeseed oil(MRO) was prepared by using rapeseed oil, ethylene diamine and acrylic acid as the raw materials. Modified rapeseed oil/montmorillonite(MRO/MMT) nanocomposite was prepared by using modified rapeseed oil and montmorillonite. The emulsifying properties of MRO and MRO/MMT were determined respectively. Fourier transforms infrared spectrometry (FT-IR) and Transmission Electron microscope (TEM) results showed that MRO/MMT was prepared successfully. X-ray diffraction (XRD) results showed that modified rapeseed oil could smoothly enter the interlayer of montmorillonite, and modified the montmorillonite; with an increase in the amount of montmorillonite, the layer spacing of montmorillonite in the MRO/MMT lower after the first increase. The results of emulsifying properties indicated that emulsifying properties of MRO/MMT was better than MRO.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hang Li ◽  
Jiamin Liu ◽  
Zhanzhong Wang ◽  
Xiaodong Liu ◽  
Xichun Yan ◽  
...  

Abstract With chili and liquid beef tallow as the main raw materials, the processing conditions of chili flavor beef tallow were explored. Gas chromatograpy-ion mobility spectrometry (GC-IMS) was used to determine the volatile compounds in chili flavor beef tallow. The capsaicin and dihydrocapsaicin in chili flavor beef tallow were determined by high performance liquid chromatography (HPLC). The optimum technological conditions were determined, and the index of chromatic aberration, cholesterol was also determined. Based on GC-IMS analysis, 102 kinds of volatile compounds were detected, and the sample III (the ratio of solid–liquid was 1:5, the frying temperature was 120 °C, and the frying time was 15 min) performed better than other samples. The preparation of chili beef tallow improves its antioxidant activity and makes its aroma more intense and more in line with the taste of Chinese people, which provides a theoretical and practical basis for the development of spice beef tallow in the future.


2021 ◽  
Vol 316 ◽  
pp. 1055-1060
Author(s):  
Vyacheslav Barakhtenko

The modern development of the construction industry needs to find ways to create new competitive materials. Such materials are polymer composites, since the range of their application can be wide, due to the possibility of regulating their technical properties. This work presents a research on the development and production of polymer composites and products from them with the improved mechanical properties by adding finely dispersed techno-genic mineral raw materials as a functional filler. As a dispersed filler of the polyvinyl chloride composition, waste from the production of refined silicon was used, which is dust from the entrainment of furnaces captured by an electrostatic precipitator. To predict the characteristics of the materials obtained, the applicability criteria of techno-genic raw materials in the polyvinyl chloride composition are studied. Studies of the mechanical and operational properties of the obtained composites have confirmed the possibility of using techno-genic raw materials as functional fillers that affect the mechanics, durability, and also significantly reduce the cost of finished products.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Jian-Wei Ma ◽  
De-Ning Song ◽  
Zhen-Yuan Jia ◽  
Wen-Wen Jiang ◽  
Fu-Ji Wang ◽  
...  

To reduce the contouring errors in computer-numerical-control (CNC) contour-following tasks, the cross-coupling controller (CCC) is widely researched and used. However, most existing CCCs are well-designed for two-axis contouring and can hardly be generalized to compensate three-axis curved contour following errors. This paper proposes an equivalent-plane CCC scheme so that most of the two-axis CCCs or flexibly designed algorithms can be utilized for equal control of the three-axis contouring errors. An initial-value regeneration-based Newton method is first proposed to compute the foot point from the actual motion position to the desired contour with a high accuracy, so as to establish the equivalent plane where the estimated three-dimensional contouring-error vector is included. After that, the signed contouring error is computed in the equivalent plane, thus a typical two-axis proportional-integral-differential (PID)-based CCC is utilized for its control. Finally, the two-axis control commands generated by the typical CCC are coupled to three-axis control commands according to the geometry of the established equivalent plane. Experimental tests are conducted to verify the effectiveness of the presented method. The testing results illustrate that the proposed equivalent-plane CCC performs much better than conventional method in both error estimation and error control.


2011 ◽  
Vol 328-330 ◽  
pp. 203-208 ◽  
Author(s):  
Cheng Bin Chen ◽  
Da Heng Mao ◽  
Chen Shi ◽  
Yang Liu

Nano-WS2(tungsten disulfide nanoparticles)lubricating oil additive, prepared by the nanometer WS2particulates and semi-synthetic engine base oil as raw materials, was added into Great Wall engine oil with different mass ratio. With a contrast study on these oil samples, the results show that it can improve the extreme pressure, antiwear and viscosity-temperature properties of the engine oil effectively by adding a certain amount of nano-WS2additive, and the optimal concentration is 2wt%. The oil film strength, sintering load and viscosity index of this lubricating oil is respectively 1.35 times, 1.58 times and 1.05 times as that of Great Wall engine oil. In addition, when tested under the grinding conditions of 392 N, 1450 r /min and 30 min, the diameter of worn spot reduces 0.018mm, and the average friction coefficients of friction pairs decrease 16.3%, both of which are lubricated by the oil containing nano-WS2additive. Meanwhile, the experiments testify that the tribological and viscosity-temperature properties of the nano-WS2additive are better than that of the Henkel MoS2additive.


RSC Advances ◽  
2019 ◽  
Vol 9 (34) ◽  
pp. 19675-19679
Author(s):  
Weiliang Tian ◽  
Zhong Li ◽  
Kewei Zhang ◽  
Zhenhong Ge

Well-defined vermiculite nanosheets are exfoliated by a facile water-assisted anion-exchange approach. As its negatively charged laminates can stabilize hydrogen chloride, the VMT nanosheets show excellent thermal stability for PVC resin.


2015 ◽  
Vol 9 (7) ◽  
pp. 99 ◽  
Author(s):  
Nyoman Puspa Asri ◽  
Diah Agustina Puspita Sari

Synthesis of biodiesel is a strategic step in overcoming energy scarcity and the environmental degradationcaused by the continuous use of the petroleum based energy. Biodiesel as an alternative fuel for diesel engine isproduced from renewable resources such as vegetable oils and animal fats. The main obstacle in the biodieselproduction is the high price of the raw materials, resulting in the price of biodiesel is not competitive comparedto the petroleum diesel. Therefore, the use of waste frying oils (WFO) is one way to reduce the cost of biodieselproduction, because of its availability and low price. In the present work, WFO from California Fried chicken(CFC) restaurants in Surabaya were used as feed stock for the biodiesel production. The experiments wereconducted using three steps of processes: pre-treatment of WFO, preparation of alumina based compositecatalyst CaO/KI/γ-Al2O3 and transesterification of treated WFO. WFO was treated by several types and variousamounts of activated adsobents. The treated WFO was transesterified in three neck glass batch reactor withrefluxed methanol using CaO/KI/γ-Al2O3. The results reveal that the best method for treating WFO is using 7.5%(wt. % to WFO) of coconut coir. Alumina based composite catalyst CaO/KI/γ-Al2O3 was very promising fortransesterification of WFO into biodiesel. The yield of biodiesel was 83% and obtained at 65ºC, 5 h of reactiontime, 1:18 of molar ratio WFO to methanol and 6% amount of catalyst.


2013 ◽  
Vol 554-557 ◽  
pp. 423-432 ◽  
Author(s):  
Patrick Böhler ◽  
Frank Härtel ◽  
Peter Middendorf

In several fields of engineering the use of carbon fibre reinforced material (CFRP) is increasing. Minimized weight due to CFRPs could lead to lower consumption of raw materials especially in the automotive area. The goal within the research project TC² is the decrease of costs and production time for composite materials. To achieve better performance to weight ratio and to get acceptable production conditions the draping of dry unidirectional textiles and a following RTM process is investigated. Due to the high degree of complexity of automotive structures the forming process is challenging. Gapping in the textile could appear at corners as well as wrinkling or flexion of the fibres. To be able to define the amount and direction of layers or patches it is necessary to know the limits of forming for unidirectional material and to be able to predict the behaviour of the textile during the forming process. For the definition of the process limits several draping strategies are performed on different corner blend geometries. The goal of that work is to define the critical gradient of the flange to get first failures such as wrinkling or gapping. It is also important to understand the influence of different draping strategies. Parallel to the experimental tests a mesoscopic simulation method using an approach with roving and sewing thread is developed and presented. It is able to predict the material behaviour in critical areas (gapping, wrinkling). Different Young’s moduli and failure criteria can be implemented for the two main directions as well as for the bending of the textile. A validation with the experimental results is performed with the aim to enable the prediction of the textile behaviour using simulation methods.


Sign in / Sign up

Export Citation Format

Share Document