scholarly journals Modifikasi Sistem Transmisi pada Mesin Pencacah Sampah/Limbah Plastik dengan Sistem Crusher dan Silinder Pemotong Tipe Reel

2016 ◽  
Vol 11 (2) ◽  
pp. 42
Author(s):  
Junaidi - ◽  
Ichlas Nur ◽  
Zulfikar - ◽  
Nasirwan -

An increasing number of plastic waste, but can be recycled into other products in the form of granules before further processing into a grain pellets and injection molding processes to produce products such as buckets, plates, bottles and others. To be processed into the required form of granules of plastic thrasher. Even so small plastic recycling industry is still constrained within a plastic enumeration process because the machine used his ability was not maximal.The purpose of this study is a modification of the transmission system thrasher plastic crusher system and cylinder-type cutter reel and technical evaluation. This study was conducted over two years, the first year the design and manufacture of machinery, the second year is the technical evaluation of the engine, improved engine performance. From the results of the study year I found some weaknesses machines namely, 1) the machine is often hampered by the transmission belt on the motor shaft with shaft reducer as drive unit crusher often slip when a large load, 2) transmission gears hipoid of the motor shaft with shaft type unit reel get a great friction and cause the sound very noisy. To improve the performance of the engine of the transmission system needs to be fixed.From the results of the design redesign the engine in the second year, namely, the installation of a connector axle of the motor shaft with shaft-type knife reel player. Axle used is commonly used in car axle Carry. Likewise, the transmission system between the motor shaft to the reducer as a successor to the rotation axis of the blade type crusher players use the chain sprocket to avoid slip on a rotating shaft. The results of performance testing crusher machine on lap 75 RPM and cylinder-type reel cutters 1450 RPM, engine capacity ± 130 kg / h on the cylinder type crusher and the reel-type cylinder engine capacity of ± 165 kg / h at an aperture sieve Ø 1,5 cm, with uniformity of grain 85%.

2015 ◽  
Vol 10 (2) ◽  
pp. 66
Author(s):  
Junaidi - ◽  
Ichlas Nur ◽  
Nofriadi - ◽  
Rusmardi -

Waste plastic mounting, but can be recycled into other products in the form of granules before further processed into pellets and seed injection molding process produces products such as buckets, plates, bottles and other beverages. To be processed into the required form of granules of plastic thrasher. Though so small plastic recycling industry is still constrained in plastic enumeration process because the machine used was not optimal ability. The purpose of this research is the development of the system thrasher plastic crusher and cutter cylinder-type reel and technical evaluation. This study was conducted over two years, the first year the design and manufacture of machinery, the second year is a technical evaluation of the engine, engine performance improvements and economic analysis of granular plastic products.From the results obtained engine design capacity of the machine ± 350 kg / h, the engine size is 50 cm x 120 cm x 30 cm, power motor of 10 HP at 1450 RPM rotation with 3 phase. Some of the major components of the engine that is, counter crusher unit consists of two counter rotating cylinders opposite, counter shaft size Ø 4 cm x 58 cm, blade chopper Ø 17 cm x 2 cm with the number of teeth / blades 7 pieces and the number of blades along shaft 7 pieces, buses retaining Ø 10 cm x 2 cm. Counter-cylinder unit consists of a reel-type cutter counter shaft size Ø 4 cm x 90 cm, the middle shaft mounted cylinder with Ø 17 cm x 40 cm as the holder of the chopper blades. Chopper blade consists of 4 pieces with a size of 40 cm x 2 cm x 4 cm with ASSAB materials. Furthermore, as the blade retaining bedknife shear force of the blade chopper, upper frame, lower frame, strainer, funnel entry, exit funnel, and the drive unit consists of an electric motor, reducer, belts, pulleys and 2 pieces of gear transmission. The results of performance testing machine crusher round cylinder 75 RPM and 1450 RPM reel-type cutting machine capacity ± 300 kg / h on the filter hole Ø 1.5 cm, with a 80% grain uniformity.


2019 ◽  
Vol 17 (3) ◽  
Author(s):  
Farid Majedi ◽  
Fredy Susanto

ABSTRACTPetroleum reserves are running low. To solve this problem by optimizing the use of petroleum products, used ethanol for gasoline replacement. The motor is modified so that the use of ethanol as a substitute for gasoline can be done. This study aims to see the engine performance with changes in engine capacity and the use of 2 spark plugs. This research method is to modify engine capacity from 113,7 cc to 100,45 cc and use 2 spark plugs. Performance testing of 95% ethanol fuel modification engine with Dynometer test machine, to determine power, torque and fuel consumption. Performance modification of gasoline engine and 1 spark plug is also tested, then compared. The results showed that the power in the engine capacity of 100.45 cc with ethanol fuel 95% smaller 7.3% compared to the power on the engine capacity of 100.45 cc with fuel pertalite. Torque on the engine capacity of 100.45 cc with ethanol fuel 95% smaller 7.5% compared to torque on the engine capacity of 100.45 cc with fuel pertalite. Fuel consumption on 100.45 cc engine fueled ethanol 95% larger 43.6% compared to fuel consumption in the engine capacity of 100.45 cc with fuel pertalite.Keywords : Engine capacity, 2 spark plugs, ethanol, Power, torque.ABSTRAKCadangan minyak bumi mulai menipis. Untuk mengatasi masalah ini dengan mengoptimalkan penggunaan produk minyak bumi, digunakan etanol untuk pengganti bensin. Motor dimodifikasi agar penggunaan etanol sebagai pengganti bensin dapat dilakukan. Penelitian ini bertujuan untuk melihat performa mesin dengan perubahan kapasitas mesin dan penggunaan 2 busi. Metode penelitian ini adalah memodifikasi kapasitas mesin dari 113,7 cc menjadi 100,45 cc dan menggunakan 2 busi. Pengujian kinerja mesin modifikasi bahan bakar etanol 95% dengan mesin uji Dynometer, untuk menentukan daya, torsi dan konsumsi bahan bakar. Performa modifikasi mesin bahan bakar bensin dan 1 busi juga diuji, kemudian dibandingkan. Hasil penelitian menunjukkan Daya pada mesin berkapasitas 100,45 cc dengan bahan bakar etanol 95% lebih kecil 7,3% dibandingkan pada daya pada mesin berkapasitas 100,45 cc dengan bahan bakar pertalite. Torsi pada mesin berkapasitas 100,45 cc dengan bahan bakar etanol 95% lebih kecil 7,5% dibandingkan torsi pada mesin berkapasitas 100,45 cc dengan bahan bakar pertalite. Konsumsi bahan bakar pada mesin berkapasitas 100,45 cc berbahan bakar etanol 95% lebih besar 43,6% dibandingkan konsumsi bahan bakar pada mesin berkapasitas 100,45 cc dengan bahan bakar pertalite.Kata kunci : Kapasitas mesin, 2 busi, etanol, Daya, torsi.


Author(s):  
Diana G. San Benito Pastor ◽  
Devaiah Nalianda ◽  
Vishal Sethi ◽  
Ron Midgley ◽  
Andrew Rolt ◽  
...  

Abstract This study introduces an innovative approach to sizing a differential planetary gearbox for a counter-rotating open rotor application. An updated methodology is proposed for the design of maximum load capacity gears based on the power transmitted, durability and space-envelope requirements of the application. The reported methodology has been validated by comparing the results to published data, demonstrating a maximum difference of 0.6% in geometry. Parametric analyses have also been performed to assess the impact of the design assumptions on gearbox dimensional trends. The proposed methodology enables the assessment of the impact of the preliminary transmission system design on engine performance and general arrangement. The characteristics of the gearset lead to an unequal torque split between output shafts (i.e. the propeller shafts). Given the design assumptions made, the study indicates that valid torque ratios would lie between 1.1 and 1.33. The impact of the torque ratio on the size of the gearbox has been analysed for equal rotational speeds and for different speeds between the output shafts. The study established that the transmission system design needs to be considered prior to selection of the torque ratio at engine design level.


2017 ◽  
Vol 1 ◽  
pp. S5WGLD ◽  
Author(s):  
Wajid A. Chishty ◽  
Tak Chan ◽  
Pervez Canteenwalla ◽  
Craig R. Davison ◽  
Jennifer Chalmers

Abstract Alternative fuel for aviation has been the centre of serious focus for the last decade, owing mostly to the challenges posed by the price of conventional petroleum fuel, energy security and environmental concerns. The downslide in the oil prices in the recent months and the fact that energy security is not considered a major threat in commercial aviation, these factors have worked negatively for the promotion of alternative fuels. However, the continuous commitment to environmental stewardship by Governments and the industry have kept the momentum going towards the transparent integration of renewable alternatives in the aviation market. On the regulatory side, much progress have been made in the same timeframe with five alternative fuels being certified as synthetic blending components for aviation turbine fuels for use in civil aircraft and engines. Another seven alternative fuels are in the various stages of certification protocol. This progress has been made possible because of the extensive performance testing, both at full engine conditions and at engine components level. This article presents the results of engine performance and air pollutant emissions measurements gathered from the alternative fuels qualification testing conducted at the National Research Council Canada over the last seven years. This benchmarking data was collected on various engine platforms at full engine operation at sea level and/or altitude conditions using a variety of aviation alternative fuels and their blends. In order to provide a reference comparison basis, the results collected using the alternative fuels are compared with baseline Jet-A1 or JP-8 conventional fuels.


Author(s):  
Sachin Joshi ◽  
Frank Loccisano ◽  
Azer P. Yalin ◽  
Dave T. Montgomery

Laser ignition is a potential ignition technology to achieve reliable lean burn ignition in high brake mean effective pressure (BMEP) internal combustion engines. The technology has the potential to increase brake thermal efficiency and reduce exhaust emissions. This submission reports on engine testing of a Caterpillar G3516C stationary natural gas fueled engine with three types of ignition approaches: i) non-fueled electric prechamber plug with electrodes at the base of the prechamber (i.e., conventional ignition), ii) non-fueled laser prechamber plug with laser spark in the middle of the prechamber, and iii) open chamber plug with laser spark in the main chamber. In the second configuration, a stock non-fueled prechamber plug was modified to incorporate a sapphire window and a focusing lens to form a laser prechamber plug. A 1064 nm Q-switched Nd:YAG laser was used to create laser sparks. For these tests, a single cylinder of the engine was retrofitted with the laser plug while the remaining cylinders were run with conventional electric ignition system at baseline ignition timing of 24 degree before Top Dead Center (BTDC). The performances of the three plugs were compared in terms of Indicated Mean Effective Pressures (IMEP), Mass Burn Fraction Duration and Coefficient of Variation (COV) of IMEP, and COV of Peak Pressure Location. Test data show comparable performance between electric and laser prechamber plugs, albeit with a lower degree of variability in engine’s performance for electric prechamber plug compared to the laser prechamber plug. The open chamber plug exhibited poorer variability in engine performance. All results are discussed in the context of prechamber and engine fluid mechanics.


Author(s):  
Nick Wilvert ◽  
Sachin Joshi ◽  
Azer Yalin

Laser ignition of natural gas engines has shown potential to improve many facets of engine performance including brake thermal efficiency, exhaust emissions, and durability as compared with traditional spark ignition. We present proof of concept of a novel fiber optic delivery approach using solid core multimode step index silica fibers with large cladding diameters (400 m core, 720 m cladding). The fibers were able to deliver high beam quality 25 nanosecond pulses of 1064 nm light with 7–10 mJ energy; sufficient to consistently ignite the engine at various air-fuel ratios and loads. Comparative tests between the laser spark plug and a traditional J-gap spark plug were performed on a single cylinder Waukesha Cooperative Fuel Research (CFR) engine running on bottled methane. Performance was measured in terms of the Coefficient of Variation (COV) of Net Mean Effective Pressure (NMEP), fuel specific efficiency, and emissions of oxides of nitrogen (NOx), carbon monoxide (CO), and total hydrocarbons (THC). Tests were run at three different NMEPs of 6, 8, and 12 bar at various air-fuel ratios. Results indicate successful operation of the fiber and improved engine performance at high NMEP and lean conditions.


Author(s):  
A. R. Alihosseini ◽  
M. Boroomand ◽  
A. M. Tousi ◽  
A. Horoufi

Following design and construction of a prototype of an engine such as a microjet engine, the engine is placed in a test cell, and is tested by special instruments until the desired engine performance is achieved. The aim is to determine all of the engine components’ performance parameters. Successful testing, acquiring the right data and subsequent processing and analysis can be useful and effective in design, optimization and maintenance of such engines. This paper describes the process of design and construction of microjet engine indoor test cell at Amirkabir University of Technology and performance testing of a microjet engine. This project has been conducted after testing the engine at outdoor test cell. The fact of bringing the engine in an enclosed test bed has effects on engine’s performance especially on the engine’s thrust. Therefore, the aerodynamic design of the test cell is conducted in a way to provide uniform airflow for the engine, have less proneness to test cell influence factors and reduces the adverse environmental conditions on engine’s performance during the process of testing. The phase of construction of the indoor test cell followed after designing phase is presented. On the other hand, the choice of instrumentation and the way it is arranged is discussed. Finally, the process of testing the engine and gathering data is described and results from the first tests conducted on the finished facility are presented.


2019 ◽  
Vol 43 (6) ◽  
pp. 393-400
Author(s):  
Antonino Rinaudo ◽  
Salvatore Pasta

Introduction: To offer respiratory support for patients with lung disease, a novel technological solution for blood pumping and oxygenation is being developed. The pump–lung system was designed to integrate fiber membranes into six packages radially embedded in a rotating hollow shaft placed along the longitudinal axis of the device. Fiber packages are inclined with respect to the rotation axis so that the rotational motion of the rotating shaft allows a self-pumping system to be obtained. Method: Both hemodynamic and gas transfer performances were investigated using both in vitro experiments and in silico flow analyses. Results: The predicted flow velocity in the pump chamber was smooth and characterized by high peripheral velocities near the housing wall. As the blood flow enters the inlet, the static pressure increased with the angular momentum imparted to the fiber packages. Experiments confirmed that the proposed pump–lung system can provide adequate blood flow and oxygen transfer over the range of intended operating conditions (0.5–5 L/min and 500–1500 r/min). Conclusion: Although the study did not include animal testing, the novel pump-oxygenator solution is feasible for respiratory support in patients with lung diseases.


1988 ◽  
Vol 3 (4) ◽  
pp. 1509-1517 ◽  
Author(s):  
S.S. Choi ◽  
J.R. Stewart ◽  
B. Singh ◽  
P.F. Carrington ◽  
E.H. Goddard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document