Optimalisasi Kuat Tekan dan Kuat Lentur Beton Menggunakan Campuran Lateks

2021 ◽  
Vol 4 (2) ◽  
pp. 159
Author(s):  
Ary Prastowo ◽  
Ahmad Ridwan ◽  
Edy Gardjito ◽  
Zendy Bima Mahardana

Concrete is a building construction material that has an important role. Concrete itself tends to have strong properties in resisting compressive forces, but weak in resisting tensile or flexural forces. The use of additives in concrete is an option to improve the basic properties of concrete. Latex or rubber latex is one of the natural materials that can be used in concrete mixtures. Its adhesive properties can be utilized in improving the quality of concrete. This study aims to determine the compressive strength and flexural strength of concrete with the addition of latex. The research was conducted experimentally by making concrete specimens in the laboratory. The addition of latex by 10% and 30% with a planned concrete quality of fc' 29.5 MPa. The test object used is a cylinder measuring 15x30 cm and a beam measuring 15x15x30 cm. The tests carried out were testing the compressive strength and flexural strength at the age of 28 days. The results showed that the highest compressive strength was at the addition of 10% latex with a value of 9.96 MPa. While the highest flexural strength value obtained was 3.20 Mpa at the addition of 10% Latex or. From these results it can be seen that the addition of latex has not been able to improve the quality of concrete and has not been able to increase the compressive strength or flexural strength of concrete. So that these results can be used as research development or concrete production.

Author(s):  
C.H. Aginam ◽  
C.M. Nwakaire ◽  
P.D. Onodagu ◽  
N.M. Ezema

The use of crushed quarry dust as a partial replacement of river sand in concrete production was investigated in this study. This is expedient as quarry dust can be available at some locations with insufficient river sand for construction purposes. The use of quarry dust is also in concrete is also a measure necessary for improvement of concrete strength. River sand was replaced with quarry dust for different mix designs of concrete for 0% to 25% replacement levels with 5% intervals. The physical properties of river sand and quarry dust were tested and reported and the workability as well as compressive strengths of the concrete mixtures were also tested. It was observed that the slump values increased with increase in percentage replacement of sand with quarry dust. The compressive strength of cubes at 28 day curing for control mixture of 1:3:6 at 0% partial replacement of river sand with quarry dust was 12.6N/mm2 but compressive strengths of 21.5 N/mm2 and 26.0 N/mm2 were gotten for 1:2:4 concrete and 1:1.5:3 concrete respectively. As the quarry dust content increased to 25%, the 28day compressive strength increased to 13.58 N/mm2 and 21.57 N/mm2 for the 1:3:6 and 1:2:4 mixes respectively. Compressive strength values decreased to a value of 25.72N/mm2 for the 1:1.5:3 concrete mix. The maximum compressive strength values were reached at 20% quarry dust content at the age of 28 days for the three concrete grades investigated. The increase in compressive strength with inclusion of quarry dust was attributed to the higher specific gravity of quarry dust above river sand. The compressive strength of quarry dust concrete continued to increase with age for all the percentages of quarry dust contents. Quarry dust was recommended as a suitable partial replacement for river bed sand in concrete production.


Author(s):  
Lawrence Echefulechukwu Obi

This work was necessitated by the observations made at construction sites where artisans and craftsmen were left alone in concrete production. It was discovered that they used inadequate quantity and size of coarse aggregates due to difficulty associated in the mixing as if the coarse aggregates were not needed in concrete production. The research has established that the coarse aggregates and their sizes play critical roles in the development of adequate strength in concrete. It was observed that with proper mixing, the slump test results did not witness shear or collapse type of slump rather there were true slump in all cases of the test. The workability decreased with slight differences when the coarse aggregate size was increased. The increase in the coarse aggregates yielded appreciable increase in the compressive strength. It can therefore be inferred that the quality of concrete in terms of strength can be enhanced through an increase in the coarse aggregate size when proper mix ratio, batching, mixing, transporting, placing and finishings are employed in concrete productions.


Author(s):  
Nasir Bumulo ◽  
Nur Windawaty Rusnadin

Concrete is a construction material that is widely used in building structutre work in indonesia becouse it has many benefits. Its compactness and cooperation arragement is very influential toward the compressive strength. One factor is the compectness of concrete fine aggregate and coarse aggregate. The aim of this research was to find out compessive strength of concrete at 28 days using sand material zone III with pebbles the size of 20 mm and 40 mm in a normal concrete mix.The reseach was using the quantitaive testing method. The independent variable of this research was the composition of the mixture, and dependent variable was in the form of concrete quality. The control variable was the material being used. The data collection was done by conducting laboratory testing based on SNI and PBI. The data analysis was done by calculating the average of the test results are then compered with SNI and PBI.The result of concrete research with sand material of zone III and gravel of 20 mm and 40 mm was observed at 28 days old showed a compressive strength value of 311,89 Kg / cm2. Then the concrete sample with sand material of zone III and pebble size 40 mm shows the value of compressive strength of 334,46 Kg / cm2. From this result, it can be concluded that the mixture of sand zone III with gravel measuring 40 mm has a value of concrete compressive strength greater than 20 mm.


2013 ◽  
Vol 795 ◽  
pp. 684-691 ◽  
Author(s):  
Wail N. Al-Rifaie ◽  
Omar Mohanad Mahdi ◽  
Waleed Khalil Ahmed

The present research examined the compressive and flexural strength of nanocement mortar by using micro cement, micro sand, nanosilica and nanoclay in developing a nanocement mortar which can lead to improvements in ferrocement construction. The measured results demonstrate the increase in compressive and flexural strength of mortars at early stages of hardening. In addition, the influence of heating on compressive strength of cement mortar. General expressions to predict the compressive strength, modulus of rupture for the developed nanocement mortar in the present work are proposed.


2020 ◽  
Vol 6 (12) ◽  
pp. 2416-2424
Author(s):  
Erniati Bachtiar ◽  
Mustaan Mustaan ◽  
Faris Jumawan ◽  
Meldawati Artayani ◽  
Tahang Tahang ◽  
...  

This study aims to examine the effect of recycled Polyethylene Terephthalate (PET) artificial aggregate as a substitute for coarse aggregate on the compressive strength and flexural strength, and the volume weight of the concrete. PET plastic waste is recycled by heating to a boiling point of approximately 300°C. There are five variations of concrete mixtures, defined the percentage of PET artificial aggregate to the total coarse aggregate, by 0, 25, 50, 75 and 100%. Tests carried out on fresh concrete mixtures are slump, bleeding, and segregation tests. Compressive and flexural strength tests proceeded based on ASTM 39/C39M-99 and ASTM C293-79 standards at the age of 28 days. The results showed that the use of PET artificial aggregate could improve the workability of the concrete mixture. The effect of PET artificial aggregate as a substitute for coarse aggregate on the compressive and flexural strength of concrete is considered very significant. The higher the percentage of PET plastic artificial aggregate, the lower the compressive and flexural strength, and the volume weight, of the concrete. Substitution of 25, 50, 75 and 100% of PET artificial aggregate gave decreases in compressive strength of 30.06, 32.39, 41.73 and 44.06% of the compressive strength of the standard concrete (18.20 MPa), respectively. The reductions in flexural strength were by respectively 19.03, 54.50, 53.95 and 61.00% of the standard concrete's flexural strength (3.59 MPa). The reductions in volume weight of concrete were by respectively 8.45, 17.71, 25.07 and 34.60% of the weight of the standard concrete volume of 2335.4 kg/m3 Doi: 10.28991/cej-2020-03091626 Full Text: PDF


2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


2018 ◽  
Vol 10 (11) ◽  
pp. 3862 ◽  
Author(s):  
Alena Sicakova ◽  
Karol Urban

Application of recycled aggregates (RA) for concrete production is limited due to their poor quality. While the environmental benefits of using the RA are well accepted, some unsolved problems prevent this type of material from wide application in structural concrete. The research and development of techniques which can minimize the adverse effect of RA on the concrete properties are highly requested. A specific mixing approach can also be helpful; here, mineral additives play a significant role for improvement of RA performance within the mixing process. However, delivery process can influence the homogeneity and uniformity of the concrete mixtures, resulting in negative effect on technical parameters. In this study, the impact of delivery time (0 min, 45 min, and 90 min) on the set of hardened concrete properties is presented while the three-stage mixing is used. Two kinds of additives—fly ash (FA) and recycled concrete powder (RCP)—were tested to coat the coarse fraction of recycled concrete aggregate (RCA) in the first step of mixing. For comparison, cement as coating material and natural aggregate instead the RCA were also used. The following parameters were tested after 28 days of setting and hardening: density, compressive strength, splitting tensile strength, water absorption capacity, and depth of penetration of water under pressure. Generally, 90 min of working with concrete mixtures left no significantly negative influence on tested characteristics. Based on ANOVA results, with prolonged discharge time, the changes in composition of the mixtures become less important for compressive strength, density, and water absorption.


2018 ◽  
Vol 18 (1) ◽  
pp. 49-58
Author(s):  
Roza Mildawati

[ID] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand. [EN] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand.


2021 ◽  
Vol 7 (2) ◽  
pp. 226-235
Author(s):  
Faisal K. Abdulhussein ◽  
Zahraa F. Jawad ◽  
Qais J. Frayah ◽  
ِAwham J. Salman

This paper investigates the effect of nano-papyrus cane ash as an additive on concretes’ mechanical and physical properties. Three types of concrete mixtures, 1:2:4, 1:1.5:3, and 1:1:2 were prepared for each mixture, nano-papyrus ash was added in five different dosages of 0.75, 1.5, 3, 4.5, and 6% by weight of cement; therefore, eighteen mixes would be studied in this work. Physical properties represented by dry density and slump were also measured for each mix. Moreover, to evaluate the mechanical properties development split tensile strength and compressive strength were obtained at age (7 and 28). Results manifested that the adding of nano ash developed the compressive strength and split tensile strength of concrete and the maximum enhancement recognized in the mixes with a content of 4.5% nano-papyrus in each studied mixture in this work. The slump test results indicated that the workability of concrete increased with adding nano-papyrus ash gradually with increasing nanoparticles' content. As well as, dry density was significant increased with nano-papyrus ratio; greater values were recorded in mixtures with 1.5-4.5% content of nano-papyrus. When comparing the concrete mixes used, it was found that the best results were obtained with 1:1:2 mixtures. This remarkable improvement in concrete properties considers the nano-papyrus is considered a cement economical and useful replacement for traditional construction material. Doi: 10.28991/cej-2021-03091649 Full Text: PDF


2021 ◽  
Vol 71 (342) ◽  
pp. e249
Author(s):  
C.R. Marín-Uribe ◽  
R. Navarro-Gaete

The flexural strength of pavement concrete is generally deduced by testing beams or by applying empirical equations. In this investigation, concrete mixtures were manufactured, incorporating 0, 20, 50 and 100% Reclaimed Asphalt Pavement (RAP), by weight, as a replacement for natural aggregates. The compressive strength was measured using cubic specimens and the flexural strength was measured for three types of specimens; beam, semicircular (SCB) and modified beam. This study proposes logarithmic and power equations that allow the estimation of the flexural strength of a concrete mix that incorporates RAP as a function of its compressive strength. Linear or power models are proposed to predict beam flexural strength from SCB specimens and a logarithmic model for modified beam specimens. Statistical analyses show that the proposed prediction models can be considered sufficiently accurate and their use is justified.


Sign in / Sign up

Export Citation Format

Share Document