REVIEW ON PARENTRAL DRUG DELIVERY SYSTEM: A NOVEL APPROACH

Author(s):  
Rakesh Roshan Mali ◽  
Himanshu Tomar

Drug delivery is a process that includes dosage form and route of administration. It refers to procedures or approaches for transporting pharmaceutical compound in the body safely to achieve its therapeutic effect. The Parenteral drug delivery system is the most common and efficient for delivery of active drug substances with poor bio-availability and the drugs with a narrow therapeutic index. Though parenteral administration of drug is often critical and associated with problems such as limited number of acceptable excipients, stringent requirements of aseptic production process, safety issues, and patient noncompliance. Still this route maintains its value due to special advantages like quicker onset of action in case of emergency; target the drug quickly to desired site of action, prevention of first pass metabolism etc. The application of advanced drug delivery technology to parenteral administration lead to development of SLNs, liposomes, niosomes, lipid nano dispersions etc. to overcome limitations of conventional parenteral delivery.Drug delivery technology that can reduce the total number of injection throughout the drug therapy period will be truly advantageous not only in terms of compliance, but also to improve the quality of the therapy. Such reduction in frequency of drug dosing is achieved by the use of specific formulation technologies that guarantee the release of the active drug substance in a slow and predictable manner. The development of new injectable drug delivery system has received considerable attention over the past few years.

2019 ◽  
Vol 10 (4) ◽  
pp. 2875-2885 ◽  
Author(s):  
Aravindhanthan V ◽  
Anjali P B ◽  
Arun Radhakrishnan

Sublingual drug delivery system was a well-established platform for delivering the drug that need to exhibit quick action without any first-pass metabolic effect, but various pitfall in the regular sublingual drug delivery systems such as a tablet, capsule etc., that can be overcome by novel sublingual drug delivery technology such as particulate sublingual spray. Sublingual spray for drug administration has gained attention in the market since it proved its propensity to by-pass the first-pass metabolism and to initiate a rapid onset of action due to its atomized micro particulate nature, which is significantly higher than the other sublingual formulations. The approval of sublingual spray by the regulatory agencies may commence further research in this field by subsuming various essential drugs for indications such as cancer pain, cardiovascular issue etc. This article comprises a detailed study on the drawback of conventional sublingual drug delivery system and the approach by which these drawbacks can be overruled by spray technology in the sublingual area and the, in-depth mechanism of drug delivery through sublingual with the help of atomization followed by the entire formulation strategy along with evaluation and industrial perspective of the sublingual spray dosage form as a future tool of patient-friendly drug delivery.


Author(s):  
Sali S. R. ◽  
Gondkar S. B. ◽  
Saudagar R. B.

The widely effective and most common form of drug delivery is parenteral administration for active drug substances with poor bio-availability and the drugs with a narrow therapeutic index. Though parenteral administration of drug is often critical and associated with problems such as limited number of acceptable excipients, stringent requirements of aseptic production process, safety issues, patient noncompliance. Still this route maintains its value due to special advantages like quicker onset of action in case of emergency, target the drug quickly to desired site of action, prevention of first pass metabolism etc. The application of advanced drug delivery technology to parenteral administration lead to development of liposomes, nanosuspensions, solid implants etc. to overcome limitations of conventional parenteral delivery. Solid implants are reported to produce very reproducible release profiles. However, because of their size, they require surgical implantation or the use of large trochars to administer the product. Delivery systems consisting of microparticles can be injected into the body using conventional needles and syringes and have been the most widely accepted biodegradable polymer system for parenteral use. However, the manufacturing processes for microparticles are often complex and difficult to control leading to batch-to-batch product non uniformity. These methods of administration often limit the product's market potential due to patient and physician acceptance issues. Therefore, a delivery system that combines the simplicity and reliability of solid implant devices alongwith convenience and ease of administration of microparticles is desired. In situ gel forming systems represent a desired alternate. This article gives the idea about In situ gel forming system to provide drug release in sustained release manner.


Author(s):  
Anuttam Kuila ◽  
Nagasamy Venkatesh Dhandapani ◽  
Himangshu Bhowmik ◽  
Abhishek Soni ◽  
Kammari Harish Kumar

The research on chronotherapy has garnered interest from scientists to understand circadian rhythms and their applications in the biological system. The area of chronotherapeutics covers essential information which is helpful to move forward and solve entanglements in current drug delivery technology. Chronotherapy is the conveying drugs in the body at the target site by maintaining perfect synchronicity with circadian rhythms. The main aim of the current rhythmic research is to formulate and design a therapeutic novel system which can deliver the drug in a desired way inside the body to treat various rhythmic diseases according to their occurrence. Drug release from an ideal chronotherapeutic system should be rapid, and the release of drug from the delivery system should also be complete after a specific or defined lag time period. Recently, scientists are involved in developing chronotherapeutic drug delivery system to treat chronological diseases such as single and multiple units using an erodible, soluble or insoluble polymer coating, and stimuli regulated drug delivery systems. In this review, we focus on the elaboration of the concept of chronotherapy, main challenges ahead during its development process, current approaches and its future applications in drug delivery in the treatment of circadian rhythmic diseases.


2020 ◽  
Vol 11 (2) ◽  
pp. 2505-2518
Author(s):  
Sindhuja Devaraj ◽  
Ganesh GNK

Nanoparticulate drug delivery system are the rapidly developing system, and nanoparticles are present in the size range of 1-100nm. Nanoparticles composed of various thermal, electrical, and optical property. Nanoparticles offers the potential advantages over the traditional dosage forms it is ascribable to the properties of nanoparticles. Nanoparticulate drug delivery system ensures the site-specific delivery of a drug(Targeting drug delivery) and aids in improving the efficacy of the new as well as old drugs and has the potential in crossing the various physiological barriers and also improves the therapeutic index of the drugs and increases the patient compliance. The objectives of this review is to classify the nanoparticles based on the different groups, surface properties of nanoparticles, describe the strategies of drug targeting, the necessity of nanoparticles their general method of preparation, different methods used in characterization, self- assembly and mechanism of drug release in a systemic manner. The potential advantages and limitations of various nanoparticulate drug delivery systems are also discussed elaborately.


Nano LIFE ◽  
2021 ◽  
Vol 11 (02) ◽  
pp. 2150001
Author(s):  
Yasaman Hamedani ◽  
Murugabaskar Balan ◽  
Soumitro Pal ◽  
Sankha Bhowmick

Delivery of therapeutic compounds to the diseased area in the body with minimized adverse effects is the underlying objective behind development of advanced drug delivery systems. Providing disease-specific release patterns is the ultimate goal of any drug delivery system. Electrospinning has been widely used for nanofiber fabrication. Having high aspect ratio and similarity to the extracellular matrix in the body make electrospun nanofibers a great candidate to be used as drug delivery implants. In this study, we report electrospinning to be a tunable technique capable of providing engineered, disease-specific drug release patterns. Using “one factor at a time” and “central composite design” techniques, we respectively demonstrate flow rate and applied voltage to be the two most significant parameters (with [Formula: see text]-values of 512.48 and 42.31) affecting the final fiber diameter, and capillary-to-collector distance as the least important one, by evaluating their influence, individually and combined, on the morphology of electrospun Poly (Lactide-co-Glycolide acid) nanofibers. Using the same two techniques, we also show that hydrophobicity of the polymeric fibrous scaffold, measured by water contact angle (WCA) with the [Formula: see text]-value of 376.44, is the main factor to consider when designing an electrospun fibrous drug delivery system for a specific disease, while fiber diameter can further modulate the release pattern of the drug from hydrophobic polymeric nanofibers. We finally support our hypothesis by comparing our findings with analysis of data derived from the literature. Taken together, our findings suggest electrospinning to be a tunable technique capable of providing various release patterns for any small molecular weight drug on the basis of the requirements of the diseases to be treated.


2019 ◽  
Vol 107 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Yousef Fazaeli ◽  
Mohammad Amin Hosseini ◽  
Mohammadreza Afrasyabi ◽  
Parviz Ashtari

Abstract Silica nanoparticles (SNPs) are known as intrinsic radiolabeling agents and offer a fast and reliable approach to deliver theranostic agents into targeted organs. Radiolabeled amorphous silica nanoparticles are of great interest to radiation oncology communities. In order to improve the performance of these nano materials in cancer diagnosis and treatment, their inherent properties, such as surface area and the ability to accumulate in cancer cells, should be enhanced. Pyridine functionalized mesoporous silica MCM-41 is known as a potential anticancer-drug delivery system with high suface area. In thiswork, in order to produce an image-guided drug delivery system for diagnostic applications, [68Ga] radionuclide was grafted on pyridine functionalized MCM-41. The nanoparticles were assessed with atomic force microscopy (AFM), paper chromatography, X-ray diffraction, FTIR spectroscopy, CHN and TGA/DTA analyses. The pharmacokinetic profile evaluation of the radiolabeled nano silica, [68Ga]-Py-Butyl@MCM-41, was done in Fibrosarcoma tumor-bearing mice. This labeled nanocomposite with appropriate blood circulation in body, high structural stability, high tumor/blood ID/g% ratio and fast excretion from the body can be proposed as an efficient nano engineered composite for upcoming tumor targeting/imaging nanotechnology-based applications.


2019 ◽  
Vol 20 (15) ◽  
pp. 3764 ◽  
Author(s):  
Mona Ebadi ◽  
Kalaivani Buskaran ◽  
Bullo Saifullah ◽  
Sharida Fakurazi ◽  
Mohd Zobir Hussein

One of the current developments in drug research is the controlled release formulation of drugs, which can be released in a controlled manner at a specific target in the body. Due to the diverse physical and chemical properties of various drugs, a smart drug delivery system is highly sought after. The present study aimed to develop a novel drug delivery system using magnetite nanoparticles as the core and coated with polyvinyl alcohol (PVA), a drug 5-fluorouracil (5FU) and Mg–Al-layered double hydroxide (MLDH) for the formation of FPVA-FU-MLDH nanoparticles. The existence of the coated nanoparticles was supported by various physico-chemical analyses. In addition, the drug content, kinetics, and mechanism of drug release also were studied. 5-fluorouracil (5FU) was found to be released in a controlled manner from the nanoparticles at pH = 4.8 (representing the cancerous cellular environment) and pH = 7.4 (representing the blood environment), governed by pseudo-second-order kinetics. The cytotoxicity study revealed that the anticancer delivery system of FPVA-FU-MLDH nanoparticles showed much better anticancer activity than the free drug, 5FU, against liver cancer and HepG2 cells, and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.


2020 ◽  
Vol 8 (10) ◽  
pp. 2040-2047
Author(s):  
Yejin Zhu ◽  
Yongjian Guo ◽  
Mengdi Liu ◽  
Libin Wei ◽  
Xiaotang Wang

A novel AIE-active drug delivery system was developed for imaging-guided cancer therapy with improved efficacy.


Author(s):  
DIPJYOTI BISWAS ◽  
SUDIP DAS ◽  
SOURAV MOHANTO ◽  
SHUBHRAJIT MANTRY

The modified/regulated drug delivery system helps to sustain the delivery of the drug for a prolonged period. The modified drug delivery system is primarily aimed at ensuring protection, the effectiveness of the drug, and patient compliance. The transdermal drug delivery system (TDDS) falls within the modified drug delivery system, in which the goal is to deliver the drug at a fixed dose and regulated rate through the skin. Polymers are the backbone of the framework for providing transdermal systems. The polymer should be stable, non-toxic, economical, and provide a sustainable release of the drug. In general, natural polymers used in the TDDS as rate-controlling agents, protective, and stabilizing agents and also used to minimize the frequency of dosing and improve the drug’s effectiveness by localizing at the site of action. Nowadays, manufacturers are likely to use natural polymers due to many issues associated with drug release and side effects with synthetic polymers. Drug release processes from natural polymers include oxidation, diffusion, and swelling. Natural polymers may be used as the basis to achieve predetermined drug distribution throughout the body. The use of natural materials for traditional and modern types of dosage forms are gums, mucilages, resins, and plant waste etc. Thus, the main objective of this review article is to give a brief knowledge about the extraction, modification, characterization, and biomedical application of conventional natural polymers used in the transdermal drug delivery system and their future prospective.


Sign in / Sign up

Export Citation Format

Share Document