scholarly journals Identifying geometric configuration of earthquake-resistant buildings

2021 ◽  
Vol 6 (2) ◽  
pp. 315-324
Author(s):  
Livian Teddy ◽  
Johannes Adiyanto ◽  
Husnul Hidayat

Indonesia is an earthquake-prone area because it is located at the world's most active tectonic plates and hundreds of local faults. Obviously, there have been many earthquake victims caused by collapsed buildings, hence the need for earthquake-resistant construction. However, there is not much guidance for architects to design earthquake-resistant buildings. This research proposes guidance for architects on how to design building forms relatively able to resist earthquakes. The simulation experiment method involving 32 building models in various forms was employed. The experimental results were then analyzed with modal analysis in ETABS and SVA for architectural design. Based on the analysis report, some guidelines were proposed: 1). Avoid buildings that are too slender, use the slenderness ratio H/D ≤ 2, 2). Avoid soft stories where the ratio of the top column height (h) to the bottom column height (h1) ≤ 0.8, 3). Use symmetrical shapes with 1 or 2 axes and avoid shapes with random compositions, 4). Use the additive and subtractive mass transformation ≤ 15%, 5).Strengthen the structural elements, install shear walls, or use dilatation to minimize potential torsional irregularities and non-parallel system irregularities of L, T, U, +, and Z forms6). Avoid using non-axial asymmetrical forms.

2021 ◽  
Vol 907 (1) ◽  
pp. 012002
Author(s):  
Livian Teddy ◽  
Husnul Hidayat ◽  
Dessa Andriyali A

Abstract In Indonesia, an earthquake-prone area, building designs must be earthquake resistant, and using shear walls is one of the ways to make buildings more earthquake resistant. However, determining the requirements and optimal position of shear walls is difficult. Miscalculating in their positioning can cause torsion and other unpredictable behavior. Previous studies were done to know shear walls’ optimal areas and positioning. The first way was trial and error, but this method was ineffective and took a long time. The second way, MATLAB programming, is actually very effective since the needs and orientation of the walls can be determined precisely. Nevertheless, not all structural engineers and architects master the programming language. This study, therefore, proposes relatively simple formulas and procedures to determine the optimal area and positioning of shear walls for architects preliminary design during architecture design process. The accuracy test for the formulas and procedures was carried out using ETABS simulation experiments on 10 building models with various irregular categories. The result showed the formulas and procedures proposed in this study were quite accurate in calculating the needs and position of shear walls. Optimal conditions, furthermore, were quite easy to achieve in symmetrical geometric compositions (1 or 2 axes) while organic or random geometric compositions were quite difficult to achieve. When the use of shear walls achieves optimal condition, the strength and stiffness of a building are increased, and the distribution of its strength and stiffness is relatively even, hence anticipating deformation behavior and reducing building eccentricity.


Author(s):  
Zhenni Wu ◽  
Hengxin Chen ◽  
Bin Fang ◽  
Zihao Li ◽  
Xinrun Chen

With the rapid development of computer technology, building pose estimation combined with Augmented Reality (AR) can play a crucial role in the field of urban planning and architectural design. For example, a virtual building model can be placed into a realistic scenario acquired by a Unmanned Aerial Vehicle (UAV) to visually observe whether the building can integrate well with its surroundings, thus optimizing the design of the building. In the work, we contribute a building dataset for pose estimation named BD3D. To obtain accurate building pose, we use a physical camera which can simulate realistic cameras in Unity3D to simulate UAVs perspective and use virtual building models as objects. We propose a novel neural network that combines MultiBin module with PoseNet architecture to estimate the building pose. Sometimes, the building is symmetry and ambiguity causes its different surfaces to have similar features, making it difficult for CNNs to learn the differential features between the different surfaces. We propose a generalized world coordinate system repositioning strategy to deal with it. We evaluate our network with the strategy on BD3D, and the angle error is reduced to [Formula: see text] from [Formula: see text]. Code and dataset have been made available at: https://github.com/JellyFive/Building-pose-estimation-from-the-perspective-of-UAVs-based-on-CNNs .


2021 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Leonardus Setia Budi Wibowo ◽  
Dermawan Zebua

Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.


2021 ◽  
Vol 878 (1) ◽  
pp. 012053
Author(s):  
E Nehe ◽  
P Simanjuntak ◽  
S P Tampubolon

Abstract Currently, Bekasi City is developing into a residence for an urban, industrial center, and built apartments. One of them is the Urban Sky-Bekasi Apartment. This researched raises by an apartment as a case study to evaluate the performance of multi-story building structures as earthquake-resistant buildings. This researched conduct by add the original building height to 8 m (a basic height equals 102 m and a new height equals 110 m) to analyze whether the planning data made could still bear the same load with different heights and could still be categorized as earthquake-resistant buildings. From the results of the SAP-2000 output. The value of the basic static and dynamic shear forces in a 110 m building is always greater than a 102 m building in both the X and Y directions, this indicates that the taller a building is, the higher the design earthquake force used will be. The displacement in a 110 m building is always bigger than a 102 m building in both the X and Y directions. The weakest strength of the structure in a 110 m building is on the 29th floor in the X directions and Y directions, while the 102 m building is on the 26th floor in the X directions and 24 directions. It shows that with the addition of high SAP-2000 output data such as displacement, drift ratio, and other data after analysis shows that a 110 m building is categorized as an earthquake-resistant building according to SNI 1726-2012.


Prostor ◽  
2021 ◽  
Vol 29 (1 (61)) ◽  
pp. 42-55
Author(s):  
Cengiz Özmen

Seismic codes include strict requirements for the design and construction of mid-rise reinforced concrete residential buildings. These requirements call for the symmetric and regular arrangement of the structural system, increased cross-sections for columns, and the introduction of shear walls to counteract the effects of lateral seismic loads. It is challenging for architects to reconcile the demands of these codes with the spatial arrangement and commercial appeal of their designs. This study argues that such reconciliation is possible through an architectural analysis. First, the effectiveness of applying the seismic design principles required by the codes is demonstrated with the comparative analysis of two finite element models. Then three pairs of architectural models, representing the most common floor plan arrangements for such buildings in Turkey, are architecturally analyzed before and after the application of seismic design principles in terms of floor area and access to view. The results demonstrate that within the context defined by the methodology of this study, considerable seismic achievement can be achieved in mid-rise reinforced concrete residential buildings by the application of relatively few, basic design features by the architects.


1990 ◽  
Vol 5 (3) ◽  
pp. 658-665 ◽  
Author(s):  
V. Castaño ◽  
L. Martinez

We review our field investigations of construction materials which were initiated after the 1985 Mexico City earthquakes. We report observations on reinforcing steel samples collected in the ruins of collapsed buildings and describe the experiences in the production and testing of HSLA steel reinforcing bars with mechanical and metallurgical properties suitable for earthquake resistant construction. We review some aspects of the cement and concrete industries of Mexico before 1985 and present a description of the properties of polymer modified cements considering the potential not only for construction but for many other applications.


2013 ◽  
Vol 40 (9) ◽  
pp. 875-886 ◽  
Author(s):  
Jagmohan Humar ◽  
Marjan Popovski

The roof framing in single-storey buildings with large foot prints, generally used for commercial, educational, or institutional purposes, often consists of a flexible steel deck or wood panel diaphragm. Resistance to seismic lateral loads is provided by steel bracings, masonry shear walls, concrete shear walls, wood panel shear walls, or cold formed wall systems. The response of such buildings to seismic loads is strongly affected by the flexibility of the roof diaphragm. Diaphragm flexibility alters the manner in which the inertia forces, shears, and bending moments are distributed along the length of the diaphragm. In addition, it causes a significant increase in the ductility demand on the lateral load resisting system that is expected to be strained into the inelastic range under the design earthquake. Results of a study on the linear and nonlinear seismic response of buildings with flexible diaphragms are presented.


Sign in / Sign up

Export Citation Format

Share Document