scholarly journals Identification of PEG 6000 concentrations for assessing drought resistance in millet genotypes during the seed germination phase

2021 ◽  
Vol 182 (3) ◽  
pp. 30-36
Author(s):  
O. V. Gorlachova ◽  
S. N. Gorbachova ◽  
V. S. Lutenko ◽  
O. V. Anceferova

Background. Using LD50 concentrations of the osmotic PEG 6000 to select millet genotypes during seed germination for drought resistance breeding is the best way of millet genotype differentiation according to the studied trait.Materials and methods. The millet cultivars ‘Omriyane’, ‘Kharkovskoe 57’, ‘Konstantinovskoe’, ‘Slobozhanskoe’, and the accession IR 5 were selected as the test material. Water stress was applied through five concentrations of PEG (6000 MW): 11.5%, 15.3%, 19.6%, 23.5%, 28.9%, and 0.0% (control). On the sixth day of incubation, millet seed germination was measured. The regression method for assessing LD50 (half-lethal dose) by V. B. Prozorovskii was used to theoretically substantiate the selection of an optimal osmotic concentration, which would be most accurate in identifying the level of drought tolerance in millet genotypes during seed germination.Results and conclusions: The 15.3% to 28.9% concentrations of PEG 6000 solutions had a negative effect on seed germination of millet genotypes. A strongly suppressed seed germination rate was observed at the PEG concentration of 23.5%: germination percentage in all cultivars (except for IR 5, with 56.0%) fell below 50%. Calculations according to the Verhulst logistic curve and the probit analysis by V. B. Prozorovskii’s technique showed that the mean LD50 concentration of PEG 6000 solutions for all studied genotypes was 23.03%. Thus, as a result of the analysis of our experimental data and their statistical processing, we recommended the 23.0% concentration of PEG 6000 solution as the most differentiating in terms of drought resistance in the millet seed germination phase.

2015 ◽  
Vol 43 (1) ◽  
pp. 153-158 ◽  
Author(s):  
Faruk TOKLU

An experiment was conducted under laboratory and field conditions in order to evaluate the effects of different priming treatments, specifically KNO3 (1%), KCl (2%), KH2PO4 (1%), ZnSO4 (0.05%), PEG-6000 (20%), IBA (100 ppm), Mannitol (4%), GA3 (100 ppm) and distilled water, on seed germination properties and several agro-morphological plant characteristics of red lentil. Seeds not primed were used as a control. GA3 treatment increased shoot length. The control (non-primed seeds) treatment resulted in increased seedling root number and length. Distilled water, ZnSO4 and control treatments increased germination rate and percentage. In the pot experiments, GA3 treatment increased plant height and seedling emergence rate, whereas KCl treatment improved the number of nodules, as well as root and shoot dry weight when compared to the control. ZnSO4 treatment increased yield components and grain yield in field conditions. The results of this study showed that ZnSO4, GA3 and PEG-6000 seed priming treatments may be useful tools due to their positive effects on germination rate, germination percentage, yield component and grain yield of lentil.


Jurnal Wasian ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 133-143
Author(s):  
Iskandar Siregar ◽  
◽  
Riki Ramdhani ◽  
Evayusvita Rustam ◽  
Dede Sudrajat ◽  
...  

Utilization of seeds storage results in decreased plant productivity. The increase can be used by treating seeds before planting through the technique of invigoration. This purpose of the study is to assess the effectiveness of invigoration methods using polyethylene glycol (PEG 6000) and ultrafine bubbles (UFB) to improve viability and vigor of sengon seeds (Falcataria moluccana). Seed agieng using 96 % ethanol was carried out to obtain the diversity of seedlot viability as the materials for testing the effectiveness of invigoration treatments. A complete random design was used to test the effectiveness of 5 invigoration treatments, i.e., seed without invigoration treatment, soaking in PEG 6000 -0.8 Mpa, soaking in PEG 6000 -1.2 Mpa, soaking in UFB water injected by environmental air, and soaking in UFB water injected by oxygen 99 %, with soaking time is 24 hours for each treatment. Seed agieng resulted three classes of seed viability, i.e. 62 % (initial seed), 83 % (seed agieng for 30 minutes) and 57 % (seed agieng for 60 minutes). In the condition of seed germination before treatment (DBA) 57 % and DBA 62%, invigoration treatments were significantly affected on seed germination capacity, but not significantly different in DBA 83 %. The soaking treatment of UFB injected by oxigen 99 % was able to improve the germination parameters (germination capacity, germination rate, and vigor index) on the sengon seeds with DBA 57 %. For seeds with DBA 62 %, the soaking treatment in UFB injected by environmental air was provided the best germination capacity, T50, and vigor index. The treatment of UFB injected by oxygen 99 % was more effective to improve the seed with very low viability and vigor (DBA 57 %). In general, improving of seed viability and vigor is more effective by using UFB than PEG 6000.


2022 ◽  
Vol 951 (1) ◽  
pp. 012065
Author(s):  
K A Tanjung ◽  
L A M Siregar ◽  
R I M Damanik

Abstract This study aims to determine the effect of the application of plant growth regulators and osmoconditioning treatment to improve the germination of true shallot seeds. This research was conducted in Asam Kumbang, Medan Selayang, Medan, Indonesia. The research method was a Randomize Block Design with 2 factors, the first factor is Plant Growth Regulators (Z) with 6 levels, namely Z0 (Without PGRs Application), Z1 (Gibberellin 500 ppm), Z2 (Putrescine 15 ppm), Z3 (Putrescine 20 ppm), Z4 (Putrescine 15 ppm + Gibberellin 500 ppm), Z5 (Putrescine 20 ppm + Gibberellin 500 ppm). The second factor was the osmoconditioning treatment with Polyethylene Glycol (PEG) 6000 (O) with 4 levels, namely O0 (Without Osmoconditioning Treatment), O1 (PEG 6000 3%), O2 (PEG 6000 4%), O3 (PEG 6000 5%). Parameters observed were germination rate, germination rate index, percentage of germination, germination ability, simultaneous growth of seeds, seedling length, root length, seedling dry weight, and catalase activity test. The results of this study were: application of plant growth regulators could improve true shallot seed germination, indicated by the observed values of all parameters which were significantly different from those of the control (without PGRs application). The plant growth regulator that produced the best increase in germination was Gibberellins 500 ppm, although the difference in effect with other PGRs was not significantly different. Meanwhile, the osmoconditioning treatment with PEG 6000 was also able to improve the germination of true shallot seeds as indicated by an increase in most of the observed parameters, but in the root length parameter it was seen that the tendency of PEG 6000 3% always gave the highest value but gave the lowest value for this parameter. The best concentration of PEG 6000 in the osmoconditioning treatment to improve true shallot seed germination was 3%.


2011 ◽  
Vol 183-185 ◽  
pp. 1071-1074
Author(s):  
Yong Dong Sun ◽  
Xiao Hua Du ◽  
Wen Jie Zhang ◽  
Li Sun ◽  
Ran Li

Effects of drought stress on the seed germination and physiological characteristics of amaranth were investigated. The results were as follows: the germination rate and germination potential of amaranth decreased with the increasing of PEG-6000 concentrations. Meanwhile, the root length, shoot length and peroxidase (POD) activity were significantly increased at lower PEG-6000 concentrations, but then decreased with the increasing of PEG-6000. Malondialdehyde (MDA) content, proline content and superoxide dismutase (SOD) activity were all significantly increased under drought stress, and reached the top at 20% PEG-6000. These findings indicated that amaranth tolerates drought stress through increasing the activities of SOD and POD and accumulating proline content.


2021 ◽  
Vol 8 (3) ◽  
pp. 57-66
Author(s):  
Ratiba Bousba ◽  
Rabah Bounar ◽  
Narimene Sedrati ◽  
Randa Lekhal ◽  
Chourouk Hamla ◽  
...  

Seed germination is generally the critical step in seed establishment and thus the determination of successful crop production. This study was focused at examination of the biochemical and germination parameters effected by low water potential which was generated by polyethylene glycol (PEG) 6000 and mannitol, related to drought stress and growth of Waha durum wheat genotype. Two tests were carried out in a growth chamber; the first comprises seed germination into Petri dishes in the presence of different concentrations of the two osmoticums (0, 5, 10, 15 and 20 % of PEG6000 and mannitol). The second test was carried out in nutrient solution BD medium. Our results shows that Both PEG -6000 and mannitol reduced germination. Therefore, a rapid increase was observed in the rate of germination both for the control plants and the plants subjected to a concentration of 5 g/L and 10 g/L and changes in proportion to the time. For the concentration of 15 g/L and 20 g/L, this phase is very short, which explains the reduced germination rate due to the inhibitory effect of the two osmoticums on germination. In this study, PEG-6000 treatments resulted in an increase of some proteins and a decrease of others. Waha displayed 12 bands for control plants, 40 bands for PEG-6000 stressed plants (all treatments) and 35 bands for mannitol treatments.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bingchao Wu ◽  
Min Sun ◽  
Huan Zhang ◽  
Dan Yang ◽  
Chuang Lin ◽  
...  

Abstract Background Seed germination is the most important stage for the formation of a new plant. This process starts when the dry seed begins to absorb water and ends when the radicle protrudes. The germination rate of seed from different species varies. The rapid germination of seed from species that grow on marginal land allows seedlings to compete with surrounding species, which is also the guarantee of normal plant development and high yield. Pearl millet is an important cereal crop that is used worldwide, and it can also be used to extract bioethanol. Previous germination experiments have shown that pearl millet has a fast seed germination rate, but the molecular mechanisms behind pearl millet are unclear. Therefore, this study explored the expression patterns of genes involved in pearl millet growth from the germination of dry seed to the early growth stages. Results Through the germination test and the measurement of the seedling radicle length, we found that pearl millet seed germinated after 24 h of swelling of the dry seed. Using transcriptome sequencing, we characterized the gene expression patterns of dry seed, water imbibed seed, germ and radicle, and found more differentially expressed genes (DEGs) in radicle than germ. Further analysis showed that different genome clusters function specifically at different tissues and time periods. Weighted gene co-expression network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that many genes that positively regulate plant growth and development are highly enriched and expressed, especially the gibberellin signaling pathway, which can promote seed germination. We speculated that the activation of these key genes promotes the germination of pearl millet seed and the growth of seedlings. To verify this, we measured the content of gibberellin and found that the gibberellin content after seed imbibition rose sharply and remained at a high level. Conclusions In this study, we identified the key genes that participated in the regulation of seed germination and seedling growth. The activation of key genes in these pathways may contribute to the rapid germination and growth of seed and seedlings in pearl millet. These results provided new insight into accelerating the germination rate and seedling growth of species with slow germination.


Author(s):  
G. Parthasarathi ◽  
M. Arumugam Pillai ◽  
R. Kannan ◽  
S. Merina Prem Kumari ◽  
Asish K. Binodh

In the present study two sesame varieties viz., TMV7 and SVPR1 were treated with varying doses of gamma rays (250, 300, 350, 400 and 450 Gy) and Ethyl Methane Sulphonate (EMS) of different concentrations viz.,0.20, 0.40 and 0.60%. The seed germination percentage was greatly affected by mutagenic treatment of gamma rays and EMS which showed a negative dose dependent relationship in both the varieties. The expected LD50 values were calculated through probit analysis. The LD50 values for TMV7 and SVPR1 were fixed at 416.86 Gy and 389.04 Gy for gamma rays and 0.490 % and 0.349% for EMS. The germination percentage of SVPR1 was greatly reduced (17.80 & 20.55 %) and the lethal dose to kill fifty per cent of mutated population was lower (6.68% & 28.78%) than that of TMV7 in both gamma ray and EMS treatment. EMS treatment exhibited significant reduction in seed germination (62.16 % & 66.67 %) than gamma irradiation (56.76 % & 54.55 %) in TMV7 and SVPR1 respectively. The study concluded that both the mutagens are effective to produce significant variations in sesame which can be further explored for mutation mapping.


Helia ◽  
2000 ◽  
Vol 23 (33) ◽  
pp. 97-104
Author(s):  
F.M. Khalifa ◽  
A.A. Schneiter ◽  
E.I. El Tayeb

SUMMARY Seed germination of six sunflower (Helianthus annuus L.) hybrids was investigated across a range of eleven constant temperatures between 5°C and 45°C. Large temperature differences in germination rate 1/t (d-1), cardinal temperature (°C) and thermal time θ (°cd) were observed among hybrids. Base temperatures (Tb) varied between 3.3°C and 6.7°C whereas maximum germination temperatures (Tm) varied between 41.7°C and 48.9°C. Final germination fraction was attained at 15°C - 25°C whereas the maximum rate of germination was attained at 30.4°C - 35.6°C. The maximum germination rate of hybrid USDA 894, the cultivar with the slowest germination rate, was only 50% of that of hybrid EX 47. The low Tb and high Tm of sunflower appear to be one of the factors which explain the successful adaptation of sunflower to a wide range of temperature. These findings are discussed in relation to the origin of the crop and its wide adaptations in diverse habitats and climatic zones.


Sign in / Sign up

Export Citation Format

Share Document