scholarly journals Source material from the VIR collection for hybrid breeding of multiple-ear maize

2021 ◽  
Vol 182 (4) ◽  
pp. 27-35
Author(s):  
V. N. Boyko ◽  
E. B. Khatefov

Background. Expanding the genetic polymorphism of maize is an effective way to increase its productivity by involving multiple-ear genotypes in breeding.Materials and methods. In 2007, 596 maize accessions from VIR were assessed at the Kuban Experiment Station of VIR. In 2020, 52 hybrids between multiple-ear and single-ear maize lines were tested in the steppe zone of Kabardino-Balkaria at the site of the OTBOR Agrifirm. Useful agronomic traits were recorded, the coefficient of prolificacy (kmc) was calculated for the source lines and their hybrid progeny from crosses with a single-ear tester, and 52 parent lines were ranked according to the type of inheritance of the prolificacy feature.Results. Accessions that combined prolificacy with other useful agronomic traits were identified. The following accessions were selected for their plant height (score 5, 126–175 cm): k-8819, k-9054, k-15269, k-15355, k-15360, k-15331, k-15877, k-15442, k-15443, k-15445, k-8009, k-14344, k-15195, k-15226 and k-17385. Accessions that excelled in the height of the ear attachment for mechanized harvesting (score 5, 50–70 cm) were as follows: k-8819, k-15269, k-15355, k-15360, k-14394, k-14904, k-14979, k-14968, k-15292, k-15391, k-9289, k-15322, k-15439, k-15442, k-15443 and k-14344. Sources of the following traits were identified: long cob (score 9, > 20 cm): k-9054, k-4535, k-13730, k-14817 and k-14996; higher number of rows per ear (score 5–9, > 16 grain rows): k-14904, k-14979, k-14968, k-15442, k-15330, k-15322 and k-9257; and higher number of grains in a row (score 5–9, > 31 grains per row): k-14904, k-14996, k-15639, k-15353, k-15330, k-15322, k-15344, k-15281, k-15439, k-9357 and k-15237. Ranking 52 accessions according to the test cross results showed that 9 of them produced progeny of the maternal type (no more than one ear), 26 of the intermediate type (1.1–1.5 ears per plant), 11 of the paternal type (1.6–2,0 ears) and 6 of heterotic type (more than 2 ears).

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1039
Author(s):  
Félicien Akohoue ◽  
David Sewordor Gaikpa ◽  
Bettina Kessel ◽  
Thomas Presterl ◽  
Thomas Miedaner

Predicting the resistance of hybrids from lines is a relevant approach for accelerating the improvement of disease resistance in hybrid breeding. In this study, genetic variation and covariation among 76 DH lines from two flint landraces, Kemater (KE) and Petkuser (PE), and their corresponding testcrosses (TC) were estimated for the first time for this material for Gibberella ear rot (GER), days to silking (DS), and plant height (PHT). Lines and TC were evaluated in four and two environments, respectively, under artificial infection with GER. TC were, on average, 42% less GER infected than their lines. TC matured 3–4 days earlier and were about 110 cm taller than the lines. GER resistance was 10% higher in KE lines and TC than PE lines and TC. Significant (p < 0.001) genotypic and genotype-by-environment interaction variances were found for all traits. Genotypic variances were generally smaller among TC than lines. Broad-sense heritability estimates were moderate to high for GER severity (0.56–0.82) and high for DS (0.78–0.88) and PHT (0.86–0.94) with higher values always observed in lines. Significant, moderate correlations between TC and line per se performance were found for GER resistance in both KE and PE (r = 0.37 and 0.55, respectively). For the two agronomic traits, correlations were higher (r = 0.59–0.76) than for GER resistance. Genomic prediction accuracies were moderate to high for GER resistance (r = 0.49–0.63) and generally higher for DS and PHT. In conclusion, a pre-selection of DH lines for GER resistance should be feasible; however, TC should be additionally tested on a later selection stage to aim for GER-resistant hybrid cultivars.


2010 ◽  
Vol 10 (4) ◽  
pp. 305-311 ◽  
Author(s):  
Itamar Cristiano Nava ◽  
Ismael Tiago de Lima Duarte ◽  
Marcelo Teixeira Pacheco ◽  
Luiz Carlos Federizzi

Understanding the genetic control of phenotypic traits is essential to increase the efficiency of selection for adapted, high-yielding genotypes. The purpose of this study was to determine the genetic control of nine traits of hexaploid oat. Phenotypic data were collected from a population of 162 recombinant lines derived from the cross 'UFRGS17 x UFRGS 930598-6'. For the traits plant growth habit, hairs on leaf edges and panicle type, monogenic genetic control was observed. A quantitative and/or polygenic genetic control was stated for the traits panicle weight, panicle length, vegetative cycle, plant height, test weight and grain yield. High heritability was estimated for the traits vegetative cycle (h² = 0.89) and plant height (h² = 0.79), while moderate heritability was determined for test weight (h² = 0.51) and grain yield (h² = 0.48).


2019 ◽  
pp. 48-52
Author(s):  
S. K. Shchukis ◽  
E. R. Shchukis

The article emphasizes the importance of peas as a source of vegetative protein, and indicates on insufficient areas under peas both in Russia and in the Altai. One of the reasons of reducing its acreage is the high costs on peas planting and protecting from pests, diseases and weeds. Climate changing contributes to rapid development of such harmful diseases as ascohitoz, bacteriosis, fusarium, rust, significant number of weevil, pea aphid and moth mullet. Considering the main directions in pea breeding, it should be emphasized that the Altai Area, with its vast territory and diverse natural and climatic conditions, requires highly productive, well-adapted varieties of different use which are capable to effectively use agro-climatic resources of different zones. All this requires the active study of the source material, the selection of new, economically valuable forms and their introduction into the breeding process. It has been noted that the production requires more advanced varieties, the development of which is impossible without the presence of diverse source material. The purpose of the study was to identify the best productive plants in the pea collection of 2012-2017. The material has been represented by 113 variety samples of domestic and foreign selection. The varieties with best productivity were ‘Mnogoplodny 163’, ‘Rheinperle’, ‘Flagman 12’, ‘806’9, ‘Varyag’, ‘Altaisky Usaty’, ‘Pioner’, ‘LittleMarwel’, ‘Mnogoplodny 27’, ‘Zeleny Tsukat’, ‘Ryadovoy’, ‘576/80’. The best forage productivity was produced by ‘Novosibirets’, ‘Varyag’, ‘Pino’, ‘Zeleny Tsukat’, ‘Mnogoplodny 105’. The most fast-ripening varieties were ‘Rheinperle’ and ‘Pyrama’. The samples ‘Novosibirets’, ‘Varyag’, ‘Pino’ and ‘8067’ were characterized with high plant height. The samples ‘Pyrama’, ‘Flagman 12’, ‘Novosibirets’, ‘Sihirobana-Kinusaja’, the line ‘312’ produced large-sized kernels. The great lodge resistance has been shown by ‘Altaisky Usaty’, ‘Svetozar’, ‘Kamerton’, ‘Flagman 12’.


2020 ◽  
Vol 47 (3) ◽  
pp. 275-282
Author(s):  
Dewi Andriani ◽  
Desta Wirnas ◽  
Dan Trikoesoemaningtyas

Sorghum has a growing popularity for food, feed, biofuel, and therefore needs to be developed. The research aimed to compare the effectiveness of pedigree and modified bulk selection methods for improving yield in three sorghum populations. The genetic materials used were 60 F6 lines from three populations, namely PI 10-90-A x Numbu, PI 150-20-A x Numbu and PI 150-20-A x Kawali which had been selected using pedigree and modified bulk methods. The experiment was conducted from October 2018 to February 2019 at the Cikabayan Experimental Station of IPB University, Dramaga, Bogor. The experiment was arranged in an augmented design with six checks, namely Kawali, Numbu, PI 10-90-A, PI 150-20-A, Samurai 1, and Samurai 2 which were replicated four times. Observations were made on agronomic traits and yield. Plant height and grain weight per panicle had high heritability and large genotypic coefficients of variation. The contrast test results showed significant differences between populations in plant height, panicle length, days of harvesting and 100-seed weight. On the other hand, no significant difference was observed among selection methods, indicating that both methods were equally effective for increasing sorghum yield. The pedigree selection and modified bulk selection increased grain yield per panicle by 14.1 g and 18.2 g respectively. Bulk of the best genotypes in early generation could be an alternative of bulk selection method. Keywords: contrast test, differential selection, genotypic coefficient of variation, heritability


2019 ◽  
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Fengmin Wang ◽  
Yan Feng ◽  
...  

Abstract Background Soybean [ Glycine max (L.) Merr.] is a legume of great interest worldwide. Enhancing genetic gain for agronomic traits via molecular approaches has been long considered as the main task for soybean breeders and geneticists. The objectives of this study were to evaluate maturity, plant height, seed weight, and yield in a diverse soybean accession panel, to conduct a genome-wide association study (GWAS) for these traits and identify SNP markers associated with the four traits, and to assess genomic selection (GS) accuracy. Results A total of 250 soybean accessions were evaluated for maturity, plant height, seed weight, and yield over three years. This panel was genotyped with a total of 10,259 high quality SNPs postulated from genotyping by sequencing (GBS). GWAS was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model, and GS was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that a total of 20, 31, 37, 31, and 23 SNPs were significantly associated with the average 3-year data for maturity, plant height, seed weight, and yield, respectively; some significant SNPs were mapped into previously described loci ( E2 , E4 , and Dt1 ) affecting maturity and plant height in soybean and a new locus mapped on chromosome 20 was significantly associated with plant height; Glyma.10g228900 , Glyma.19g200800 , Glyma.09g196700 , and Glyma.09g038300 were candidate genes found in the vicinity of the top or the second best SNP for maturity, plant height, seed weight, and yield, respectively; a 11.5-Mb region of chromosome 10 was associated with both seed weight and yield; and GS accuracy was trait-, year-, and population structure-dependent. Conclusions The SNP markers identified from this study for plant height, maturity, seed weight and yield can be used to improve the four agronomic traits through marker-assisted selection (MAS) and GS in soybean breeding programs. After validation, the candidate genes can be transferred to new cultivars using SNP markers through MAS. The high GS accuracy has confirmed that the four agronomic traits can be selected in molecular breeding through GS.


2017 ◽  
Vol 45 (1) ◽  
pp. 1-8
Author(s):  
Gerland Akhmadi ◽  
Bambang Sapta Purwoko ◽  
Iswari Saraswati Dewi ◽  
Dan Desta Wirnas

Anther culture technique is able to accelerate plant breeding activities. The objectives of this research was to determine the agronomic traits that could be used for selection of the dihaploid rice line population through the calculation of heritability, genotypic correlation, path analysis and selecting dihaploid rice lines. The plant material used was 65 dihaploid rice lines DH 1 of F1 anther culture plants and Ciherang and Inpari 13 as check varieties. Agronomic characters that could be used as selection character are generative plant height, number of filled grain per panicle, the total number of grains per panicle, weight of 1,000 grains, and grain per hill. Twenty three dihaploid lines were selected based good agronomic characters with criteria generative plant height between 80-120 cm, number of filled grains per panicle > 100, number of grains per panicle > 120, weight of 1,000 grains > 20 g, and grain per hill > 25 g.Keywords: anther culture, heritability, agronomic characters


Author(s):  
Soleman M. Al-Otayk

The present study was carried out to evaluate agronomic traits and assessment of genetic variability of some wheat genotypes at Qassim region, Saudi Arabia', during 2010/11 and2011/12 seasons. Fourteen wheat genotypes including five bread wheat and nine durum wheat genotypes were evaluated in randomized complete block design with three replications. The genotypes were evaluated for ten different yield contributing characters viz., days to heading, days to maturity, grain filling period, grain filling rate, plant height, number of spikes m-2, kernels spike-1, 1000-kernel weight, grain yield and straw yield. The combined analysis of variance indicated the presence of significant differences between years for most characters. The genotypes exhibited significant variation for all the characters studied indicating considerable amount of variation among genotypes for each character. Maximum coefficient of variation was observed for number of spikes m-2 (17%), while minimum value was found for days to maturity. Four genotypes produced maximum grain yield and statistically similar, out of them two bread wheat genotypes (AC-3 and SD12) and the other two were durum wheat (AC-5 and BS-1). The genotypes AC-3, AC-5 and BS-1 had higher grain yield and stable in performance across seasons. The estimation of phenotypic coefficient of variation in all the traits studied was greater than those of the genotypic coefficient of variation. High heritability estimates (> 0.5) were observed for days to heading, days to maturity, and plant height, while the other characters recorded low to moderate heritability. The high GA % for plant height and days to heading (day) was accompanied by high heritability estimates, which indicated that heritability is mainly due to genetic variance. Comparatively high expected genetic advances were observed for grain yield components such as number of kernels spike-1 and 1000-kernel weight. Grain yield had the low heritability estimate with a relatively intermediate value for expected genetic advance. The results of principle component analysis (PCA) indicated that the superior durum wheat genotypes for grain yield in the two seasons (AC-5 and BS-1) are clustered in group II (Fig. 2). Also, the superior two bread wheat genotypes (AC-3 and SD12) were in group I. Therefore, it could be future breeding program to develop new high yielding genotypes in bread and durum wheat.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongtao Cheng ◽  
Fenwei Jin ◽  
Qamar U. Zaman ◽  
Bingli Ding ◽  
Mengyu Hao ◽  
...  

Abstract Background Plant height is one of the most important agronomic traits in many crops due to its influence on lodging resistance and yield performance. Although progress has been made in the use of dwarfing genes in crop improvement, identification of new dwarf germplasm is still of significant interest for breeding varieties with increased yield. Results Here we describe a dominant, dwarf mutant G7 of Brassica napus with down-curved leaves derived from tissue culture. To explore the genetic variation responsible for the dwarf phenotype, the mutant was crossed to a conventional line to develop a segregating F2 population. Bulks were formed from plants with either dwarf or conventional plant height and subjected to high throughput sequencing analysis via mutation mapping (MutMap). The dwarf mutation was mapped to a 0.6 Mb interval of B. napus chromosome C05. Candidate gene analysis revealed that one SNP causing an amino acid change in the domain II of Bna.IAA7.C05 may contribute to the dwarf phenotype. This is consistent with the phenotype of a gain-of-function indole-3-acetic acid (iaa) mutant in Bna.IAA7.C05 reported recently. GO and KEGG analysis of RNA-seq data revealed the down-regulation of auxin related genes, including many other IAA and small up regulated response (SAUR) genes, in the dwarf mutant. Conclusion Our studies characterize a new allele of Bna.IAA7.C05 responsible for the dwarf mutant generated from tissue culture. This may provide a valuable genetic resource for breeding for lodging resistance and compact plant stature in B. napus.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Huijun Guo ◽  
Hongchun Xiong ◽  
Yongdun Xie ◽  
Linshu Zhao ◽  
Jiayu Gu ◽  
...  

Abstract Background Wheat mutant resources with phenotypic variation have been developed in recent years. These mutants might carry favorable mutation alleles, which have the potential to be utilized in the breeding process. Plant architecture and yield-related features are important agronomic traits for wheat breeders and mining favorable alleles of these traits will improve wheat characteristics. Results Here we used 190 wheat phenotypic mutants as material and by analyzing their SNP variation and phenotypic data, mutation alleles for plant architecture and yield-related traits were identified, and the genetic effects of these alleles were evaluated. In total, 32 mutation alleles, including three pleiotropic alleles, significantly associated with agronomic traits were identified from the 190 wheat mutant lines. The SNPs were distributed on 12 chromosomes and were associated with plant height (PH), tiller number, flag leaf angle (FLA), thousand grain weight (TGW), and other yield-related traits. Further phenotypic analysis of multiple lines carrying the same mutant allele was performed to determine the effect of the allele on the traits of interest. PH-associated SNPs on chromosomes 2BL, 3BS, 3DL, and 5DL might show additive effects, reducing PH by 10.0 cm to 31.3 cm compared with wild type, which means that these alleles may be favorable for wheat improvement. Only unfavorable mutation alleles that reduced TGW and tiller number were identified. A region on chromosome 5DL with mutation alleles for PH and TGW contained several long ncRNAs, and their sequences shared more than 90% identity with cytokinin oxidase/dehydrogenase genes. Some of the mutation alleles we mined were colocalized with previously reported QTLs or genes while others were novel; these novel alleles could also result in phenotypic variation. Conclusion Our results demonstrate that favorable mutation alleles are present in mutant resources, and the region between 409.5 to 419.8 Mb on chromosome 5DL affects wheat plant height and thousand grain weight.


Sign in / Sign up

Export Citation Format

Share Document