scholarly journals NEW ISOTOPE-GEOCHEMICAL DATA ON THERMAL WATERS OF THE TALSKOE DEPOSIT (MAGADAN OBLAST)

2021 ◽  
Vol 40 (6) ◽  
pp. 111-119
Author(s):  
I.V. Bragin ◽  
◽  
G.A. Chelnokov ◽  
N.A. Kharitonova ◽  
◽  
...  

In this paper, we summarize new data on the chemical and isotopic composition of thermal wa-ters of the Talskoye deposit in the Magadan Oblast. We were the first to obtain the data on the content of stable oxygen (δ18O) and hydrogen (δD) isotopes in thermal and background waters, as well as oxygen (δ18O) and carbon in bicarbonate ion (δ13C), even though this is the largest ex-ploited deposit of low-mineralized alkaline nitric thermal waters in the region. The thermal water is fresh (M = 980 mg/l), alkaline (pH = 8.9), hydrocarbonate-chloride-sulphate sodium with a high content of fluorine (up to 17 mg/l) and silicic acid (up to 152 mg/l). The deposit is fed by atmospheric precipitation; we did not find traces of melting underground ice supply. A sequential scheme for calculating the temperature of a deep reservoir was applied, which allowed the temperature of water formation to be constrained at 108 °C suggesting an input of fluids rich in potassium and sulfate ion.

2021 ◽  
Vol 15 (6) ◽  
pp. 602-609
Author(s):  
I. V. Bragin ◽  
G. A. Chelnokov ◽  
N. A. Kharitonova

LITOSFERA ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 280-298
Author(s):  
S. S. Potapov ◽  
D. V. Kiseleva ◽  
O. Ya. Chervyatsova ◽  
N. V. Parshina ◽  
M. V. Chervyakovskaya ◽  
...  

Subject. The aim of the work is to study the mechanism and sources of water formation, as well as the peculiarities of carbonate mineralization in the aquifer of the Kyndyg thermal water deposit. Materials and methods. The samples of water (8) and deposited carbonates (15), collected at different seasons at three sites, characterized by different temperatures and distances from the source, were investigated. pH, Eh, and electrical conductivity were determined by an electrochemical method. For the determination of HCO3 – , Cl– , SO4 2–, titrimetric, mercurymetric and turbidimetric methods were used. Trace element composition was determined by ICP-MS (NexION 300S); strontium isotopic composition – by MC-ICP-MS (Neptune Plus) using the bracketing technique after Sr chromatographic separation. Results. The chloride-calcium hydrochemical type prevails in the studied waters. A number of trace elements in water exceeds the clarke concentrations for groundwater in the supergene zone of mountain landscapes. 87Sr/86Sr isotope ratios (0.7065–0.7072) in thermal waters suggest that their composition is determined rather by the isotopic characteristics of the rocks through which water drains than by the influence of sea water. Among the newly formed carbonates, aragonite prevails. In contrast to thermal water, the concentrations of most metals in carbonates are below the clarke values; only Sr and Se are increased, which content is significantly increased in water as well. Deposited carbonates are characterized by 87Sr/86Sr values (0.7028–0.7074), which are lower than in the source thermal waters. Conclusions. On the basis of hydrogeological, hydrochemical and geochemical data, it can be assumed that the waters of this aquifer complex are formed mainly due to fresh fractured karst waters of lower Cretaceous limestones with submerged monocline dipping into the zone of slow circulation and mixing with sedimentogenic sodium chloride waters. The geochemical data and the presence of scandium anomaly suggest that the underlying Jurassic volcanogenic rocks also participate in water exchange.


Resources ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 23
Author(s):  
Pablo Hernández-Morales ◽  
Jobst Wurl ◽  
Carlos Green-Ruiz ◽  
Diego Morata

Geo-thermalism has been widely recognized on the Baja California Peninsula, especially during the last decade. The current research, carried out on Bahia Concepcion, evidences the existence of geothermal springs, which get recharged mainly by groundwater and seawater. The groundwater can be characterized as Na+-Cl− and Na+-HCO3− type, with a pH value close to neutrality. The slightly more acidic thermal sites presented temperatures between 32 °C and 59 °C at the surface. Based on the relationships of the Cl− and Br−, as well as the B/Cl−, and Br−/Cl− ratios, seawater was recognized as the main source of salinity. The spatial distribution is explained directly through marine intrusion, or via sprays and aerosols within the rainwater. Seawater ratios in thermal springs varied from 62% to 83%, corresponding mainly to shallow inflow, but seawater inputs into the deep thermal reservoir were also recognized. Temperatures in the geothermal deep reservoir were inferred from 114 to 209 °C, calculated through the SiO2 and Na+-K+ geothermometers. In addition to previously reported thermal sites at Bahía Concepción, and based on their elevated temperatures, two new sites were identified. Another five springs do not fulfill the commonly used definition, based on differential temperature, but show the typical hydrogeochemical signature of thermal water. A new approach to identify this low-temperature geothermal-influenced spring water by its hydrogeochemical composition is presented, for which the term “Masked Geothermal Waters” (MGW) is introduced. Our findings increase the area of the geothermal anomaly and, therefore, the potential of geothermal resources. The approach proposed in this research will also be useful to identify more MGW in other coastal areas.


2021 ◽  
Author(s):  
Pierfranco Lattanzi ◽  
Andrea Dini ◽  
Giovanni Ruggieri ◽  
Eugenio Trumpy

<p>Italy has never been a lithium (Li) producer, and the potential for “hard rock” deposits is moderate at best. On the other hand, the increasing demand for Li-based rechargeable batteries fostered new interest in this metal, and prompted the quest for alternative resources. The extraction of Li from geothermal brines (“geothermal lithium”) is currently considered in several countries, including, in Europe, France, Germany, and UK (EGEC, 2020).</p><p>Italy has vast geothermal resources, and there is a potential for “geothermal lithium” as well. A preliminary survey of literature data pointed out several occurrences of fluids with Li contents up to hundreds of mg/L. Among high-enthalpy fluids, we point out those of Cesano, Mofete, and Latera. At Cesano, geothermal fluids contain about 350 mg/L lithium (Calamai et al., 1976). Early studies conducted in the past century (Pauwels et al., 1990) suggested the feasibility of lithium recovery from these fluids. Even higher contents (480 mg/L) occur in the deep reservoir at Mofete (Guglielminetti, 1986), whereas fluids in the shallow and intermediate reservoir in the same field contain 28 to 56 mg/L. Geothermal fluids at Latera have somewhat lower contents (max 13.5 mg/L; Gianelli and Scandiffio, 1989). Several low-enthalpy thermal waters in Emilia-Romagna, Sardinia, Sicily and Tuscany also show significant (> 1 mg/L) Li contents (max 96 mg/L at Salsomaggiore; Boschetti et al., 2011). There are no published Li data for high-enthalpy fluids at Larderello; however, evidence of Li-rich fluids was found in fluid inclusions in hydrothermal minerals (Cathelineau et al., 1994). Moreover, the shallow (ca. 3.5 km) granitoid body underlying the field contains a Li-rich (about 1,000 ppm) biotite (A. Dini, unpublished data); it has been estimated that such rock may contain as much as 500 g Li per cubic meter.</p><p> </p><p>References</p><p>Boschetti T., et al. - Aquat Geochem (2011) 17:71–108</p><p>Calamai A., et al. <strong>- </strong>Proc. U.N. Symp. Development Use Geotherm. Energy, S. Francisco, USA (1976), 305-313</p><p>Cathelineau M., et al. – Geochim. Cosmochim. Acta (1994) 58: 1083-1099</p><p>EGEC (European Geothermal Council). https://www.egec.org/time-to-invest-in-clean-geothermal-lithium-made-in-europe/. Accessed December 2, 2020.</p><p>Gianelli G., Scandiffio G. - Geothermics (1989) 18: 447-463</p><p>Guglielminetti M. - Geothermics (1986) 15: 781-790</p><p>Pauwels H., et al. - Proc. 12th New Zealand Geothermal Workshop (1990), 117-123</p>


2021 ◽  
Author(s):  
Mirja Pavić ◽  
Staša Borović ◽  
Maja Briški ◽  
Tihomir Frangen ◽  
Kosta Urumović

<p>The increase in thermal water utilisation is foreseen by many European and Croatian strategic documents regulating energetics, tourism, environmental protection and sustainable development. Croatian Geological Survey wishes to establish a multidisciplinary group for hydrothermal systems research which will contribute to responsible geothermal development in our country through a 5-year research project HyTheC which started in 2020.</p><p>Pannonian part of Croatia has favourable geothermal characteristics and natural thermal water springs emerge at two dozen localities, with temperatures up to 65 °C. These waters have been used for millennia, and in the past fifty years they are a basis for the development of tourism and health care centres which use the thermal water resource for heating, therapy and recreation (Borović & Marković, 2015). As their water demand increased, higher quantities were abstracted and additional intake structures and wells were constructed.</p><p>Thermal springs are part of hydrothermal systems which include: recharge areas in the mountainous hinterlands of the springs; geothermal aquifers - in Croatia mostly fractured and karstified Mesozoic carbonate rocks (Borović et al., 2016) - in which water resides and gets heated due to heat flow from the Earth; and discharge areas in places with favourable structural characteristics of higher permeability. The continuous functioning of such systems depends on a delicate balance between groundwater flow velocities, precipitation/dissolution processes and structural framework.</p><p>In order to maintain that balance and use thermal water resources in a sustainable manner, a system-level understanding is required. Multidisciplinary methodology (structural geology, hydrogeology, geothermal, hydrogeochemical and geophysical research and remote sensing) will be used to construct conceptual models of systems, perform 3D geological modelling, hydrogeological and thermal parametrisation of the geological units involved in the thermal fluid flow, and conduct numerical simulations of system functioning in undisturbed conditions and with different extraction scenarios.</p><p>This methodology will be tested in three pilot areas in Croatia where thermal water is being utilized (Daruvar, Hrvatsko zagorje and Topusko). These three areas have significantly different levels of initial data availability and it shall therefore be determined which methodology and order of application of different methods should be applied while researching the systems with considerable existing data, medium amount of data and very scarce data, respectively.</p><p>Keywords : hydrothermal system, natural thermal spring, multidisciplinary research, Croatia</p><p>References</p><p>Borović, S. & Marković, T. 2015 : Utilization and tourism valorisation of geothermal waters in Croatia. Renewable and Sustainable Energy Reviews, 44, pp. 52-63.</p><p>Borović, S., Marković, T., Larva, O., Brkić, Ž. & Mraz, V. 2016 : Mineral and Thermal Waters in the Croatian Part of the Pannonian Basin. U: Papić, P., ur., Mineral and Thermal Waters of Southeastern Europe. Cham: Springer, pp. 31-45.</p><p> </p><p>ACKNOWLEDGMENT</p><p>The Installation Research project HyTheC (UIP-2019-04-1218) is funded by the Croatian Science Foundation.</p>


2021 ◽  
Author(s):  
Omar Lanchava ◽  
Shurman Oniani ◽  
Teimuraz Pirtskhalava

Mine workings located in the areas of the ascending movement of thermal waters are characterized by intense water flow and significant water cut. Our observations and calculations showed that when hot water is poured into the workings, mainly due to the intense heat and mass transfer from water to air, the increase in the heat content of the ventilation stream increases sharply and over 100-300 m (depending on the air flow rate) the temperature mine air saturated with water vapor becomes approximately equal to the temperature of hot waters. Therefore, without preliminary diversion or elimination of the inflow of hot water, in this case, the creation of normal climatic conditions in mine workings is practically impossible.


2021 ◽  
Author(s):  
Tanja Petrović Pantić ◽  
Katarina Atanasković Samolov ◽  
Jana Štrbački ◽  
Milan Tomić

Abstract In order to collect and unify data about all geothermal resources in Serbia, a database is formed. The database allows us to perceive the geothermal resources of Serbia and their potential for utilization. Based on the data available in the geothermal database, the estimated temperatures of reservoirs, heat power, and geothermal energy utilization were calculated. The database contains 293 objects (springs, boreholes) registered at 160 locations with groundwater temperature in the range between 20°C and 111°C. The maximum expected temperature of the reservoir is 146°C (according to the SiO2 geothermometer). Some thermal water is cooled while mixed with cold, shallow water. Geothermal resources are mostly used for balneology and recreation, and less for heating, water supply, bottling, fish and animal farms, agriculture, and technical water. 26% of all geothermal resources is used by the local population or has not been used at all. The annual utilization of geothermal energy for direct heat is 1507 TJ/yr, and the estimated capacity of geothermal energy in Serbia is 111 MWt. The results of analytical work were presented in the form of maps with a geological and hydrogeological background. Thermal waters are mostly registrated in the area of Tertiary magmatism. The three geothermal potential areas are identified: Pannonian basin-Vojvodina Province, Mačva-Srem and area from Jošanička Banja to Vranjska Banja (southern Serbia). Based on chemical analyses, four hydrochemical facies are distinguished. Thermal water mainly belongs to NaHCO3 or CaMgHCO3 hydrochemical facies, usually depending on the primary aquifer: karst, karst-fissured, intergranular or fissured.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Xiao Wang ◽  
Guoping Lu ◽  
Bill X. Hu

Two separate groups of geothermal waters have been identified in the coastal region of Guangdong, China. One is Xinzhou thermal water of regional groundwater flow system in a granite batholith and the other is thermal water derived from shallow coastal aquifers in Shenzao geothermal field, characterized by high salinity. The hydrochemical characteristics of the thermal waters were examined and characterized as Na-Cl and Ca-Na-Cl types, which are very similar to that of seawater. The hydrochemical evolution is revealed by analyzing the correlations of components versus Cl and their relative changes for different water samples, reflecting different extents of water-rock interactions and clear mixing trends with seawaters. Nevertheless, isotopic data indicate that thermal waters are all of the meteoric origins. Isotopic data also allowed determination of different recharge elevations and presentation of different mixing proportions of seawater with thermal waters. The reservoir temperatures were estimated by chemical geothermometries and validated by fluid-mineral equilibrium calculations. The most reliable estimates of reservoir temperature lie in the range of 148–162°C for Xinzhou and the range of 135–144°C for Shenzao thermal waters, based on the retrograde and prograde solubilities of anhydrite and chalcedony. Finally, a schematic cross-sectional fault-hydrology conceptual model was proposed.


Sign in / Sign up

Export Citation Format

Share Document