scholarly journals Adsorption of cadmium and copper onto natural clay: isotherm, kinetic and thermodynamic studies

2018 ◽  
Vol 20 (2) ◽  
pp. 198-207 ◽  

Clay of the Middle Atlas Mountains region, Morocco, was used to investigate the removal of heavy metals ions (Cadmium and Copper) from aqueous solutions with respect to several experimental conditions including pH, contact time, initial solute concentrations, temperature and ionic strength. Kinetic study revealed that metal ions uptake was fast with 90% or more of the adsorption occurring within first 30 min of contact time. Adsorption rate increased with the increasing initial metal ions concentrations and the sorption rate was well fitted by the pseudo-second-order rate model. The data according to mass transfer and intraparticle diffusion models confirmed diffusion of solutes inside the clay particles as the rate-controlling step and more important for the adsorption rate than the external mass transfer. The suitability of the adsorbent was tested by fitting the adsorption data with Langmuir and Freundlich isotherm models. Equilibrium and kinetic adsorption data showed that clay displays a high selectivity with an affinity order of Cd > Cu. Thermodynamic parameters including the Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes indicated that the present adsorption process was feasible and endothermic in the temperature range of 25–45 °C.

2018 ◽  
Vol 67 (3) ◽  
pp. 279-290 ◽  
Author(s):  
Haider M. Zwain ◽  
Mohammadtaghi Vakili ◽  
Irvan Dahlan

Abstract A novel RHA/PFA/CFA composite adsorbent was synthesized from rice husk ash (RHA), palm oil fuel ash (PFA), and coal fly ash (CFA) by modified sol-gel method. Effect of different parameters such as adsorbent dosage, contact time, and pH were studied using batch experiment to optimize the maximum zinc (Zn2+) and nickel (Ni2) adsorption conditions. Results showed that the maximum adsorption condition occurred at adsorbent amount of 10 g/L, contact time of 60 min, and pH 7. At this condition, the removal efficiencies were 81% and 61% for Zn2+ and Ni2+, in which the adsorption capacities (qmax) were 21.74 mg/g and 17.85 mg/g, respectively. Adsorption behavior of RHA/PFA/CFA composite adsorbent was studied through the various isotherm models at different adsorbent amounts. The results indicated that the Freundlich isotherm model gave an excellent agreement with the experimental conditions. Based on the results obtained from the kinetic studies, pseudo-second-order was suitable for the adsorption of Ni2+ and Zn2+, compared to the pseudo-first-order model. The results presented in this study showed that RHA/PFA/CFA composite adsorbent successfully adsorbed Zn2+ and Ni2.


2013 ◽  
Vol 67 (9) ◽  
pp. 1894-1900 ◽  
Author(s):  
Hemlata Tewari ◽  
Vivekanand

In the present study, biosorption capability of pine (Pinus roxburghii) leaves for the removal Cr6+, Cu2+, Fe2+ and Zn2+ ions, present in brass and electroplating industry effluent, were investigated with respect to different adsorbent doses, contact time and pH. Heavy metals concentrations were estimated by atomic absorption spectrophotometry. Initial concentration of Cr6+, Cu2+, Fe2+ and Zn2+ ions in the effluent were found to be 2.741, 4.551, 8.820 and 5.529 mg/L respectively. Biosorption studies revealed that Cr6+, Cu2+, Fe2+ and Zn2+ showed maximum removal of 99.85, 94.54, 97.10 and 89% at pH 4, 4, 4 and 8, respectively, with 4 g pine leaves when shaken at 150 rpm for 60 min. The applicability of the three equilibrium isotherm models was investigated and the data obtained fitted the three investigated isothermal models in the order: Langmuir > Temkin > Freundlich for all the studied metal ions. The adsorption isotherm coefficients, Qmax, b, Kf, n, at, bt were also calculated. Very high regression correlation coefficients (R2 > 0.9) were found for Cu2+, Fe2+ and Zn2+; Cr6+ (Temkin isotherm) when pH (2–8) was varied; Cr6+, Cu2+,Fe2+ and Zn2+ when contact time (15–60 min) was varied; Cu2+ (Langmuir isotherm) Fe2+ (Freundlich and Temkin isotherms) when adsorbent was varied from 2 to 5 g. Results also revealed that among all the studied ions Cr6+ at varied pH and Fe2+ at different adsorbent doses satisfy the Temkin and Freundlich isotherm models to describe the biosorption equilibrium by pine (Pinus roxburghii) adsorbent.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
T. Shanthi ◽  
V. M. Selvarajan

Carbon prepared from leaves of henna (Lawsonia inermis) was used to study the adsorption of Cr(VI) and Cu(II) ions from their aqueous solutions. The experimental conditions which include pH, contact time, initial concentration, and adsorbent dosage on the metal removal were investigated. The capacity of adsorption depends on pH value; it increases with an increase in pH value from 1 to 7 and then decreases. The highest percentage of metal removal was achieved in the adsorbent dosage of 0.7 g and at an initial concentration of 100 ppm metal ion. The adsorption isotherm studies revealed that data was confirmed with both the Langmuir and Freundlich isotherm models. The removal percentage was found to be higher for Cu(II) when compared with Cr(VI). The potential of carbon prepared from henna leaves for the removal of these two solutions containing heavy metals was substantiated.


2021 ◽  
Author(s):  
John Kabuba ◽  
Trésor Lukusa

Abstract This study describes the removal of Cu (II) and Co (II) ions from mining processes wastewater using synthesis of Gelatin-cellulose nanocrystals (CNCs) hydrogel membrane (GCHM). In a batch experiment, the influence of different parameters such as pH, contact time, temperature, and ratio of gelatin and CNCs was evaluated. Higher removal efficiency was obtained at ratio 3 ÷ 1 and at pH 5 and 7 for Cu (II) and Co (II), respectively, and a contact time of 120 mins and a temperature of 30°C. The experimental data fitted satisfactory to Freundlich isotherm model. The adsorption of metal ions has been fit by the particle diffusion model. The results revealed that gelatin and CNCs were identified as the low-cost and promising adsorption material for the removal of heavy metals from wastewater.


2021 ◽  
Vol 15 (2) ◽  
pp. 205-216
Author(s):  
P.N.S. Pathirannehe ◽  
◽  
T.D. Fernando ◽  
C.S.K. Rajapakse ◽  
◽  
...  

In this study, physically and chemically modified chitosan; protonated glycerol diglycidyl ether cross-linked chitosan beads (GDCLCB/H+) were prepared and characterized using FTIR and SEM. The optimum defluoridation capacity (DC) of GDCLCB/H+ was observed at the initial F- ion concentration of 15 mg/l, adsorbent dosage of 0.6 g, contact time of 30 min and pH of the solution was in the range of 5–7 at 303 ± 2 K. The equilibrium adsorption data fitted well with Langmuir and Freundlich isotherm models. The maximum adsorption capacity (q0), obtained from Langmuir isotherm for F-adsorption was found to be 2000 mg/kg, which was significantly higher than that of unmodified chitosan (192.3 mg/kg) and most of the chitosan-based sorbents reported in the literature. Water samples collected from Medawachchiya, Sri Lanka, were treated with the adsorbents and the results suggested that GDCLCB/H+ could be used as an effective defluoridation agent.


2015 ◽  
Vol 8 (2) ◽  
pp. 189
Author(s):  
Zulkarnain Chaidir ◽  
Qomariah Hasanah ◽  
Qomariah Hasanah ◽  
Rahmiana Zein ◽  
Rahmiana Zein

Jengkol shells (Pithecellobium jiringa) an agricultural waste from typical Indonesian plant has been investigated for its ability to absorb heavy metal ions Cr VI and Cr III . Effect of pH, concentration, contact time, mass and the speed of stirring biosorben studied by extraction method. Concentration of metal ions Cr VI and Cr III was measured using Atomic Absorption Spectrophotometer (AAS). The optimum conditions for metal ion uptake of Cr VI occurs at pH 4, the concentration of 7000 mg/L, contact time of 60 minutes, 0.1 g biosorben mass and stirring speed 100 rpm. For the metal ions Cr III wa obtained conditions optimum at pH 5, the concentration of 1500 mg/L,  contact time of 60 minutes, 0.1 g biosorben mass and stirring speed 100 rpm. Functional groups contained in the jengkol shells analyzed by Fourier Transform Infra Red (FTIR). Data equilibrium uptake of metal ions Cr VI and Cr III  by the jengkol shells analyzed using two isotherm models , namely Langmuir and Freundlich isotherm models . The absorption of both the metal ions tend to follow the Langmuir isotherm models in which the absorption capacity of metal ions obtained for Cr VI ) and Cr  III  is 24.9376 mg / g and 39. 0625 mg /g . The optimum condition was applied to study the river Batang Arau at Padang city obtained a capacity of 15.065 mg/ g with 45 efficiency, 94 % for the uptake of metal ions Cr (total).


Author(s):  
N. O. Ilelaboye ◽  
A. A. Oderinde

Increased anthropogenic activities have led to serious environmental problems due to pollution caused by toxic materials such as heavy metals whose levels are rising in the environment. The inefficiency and high cost of conventional methods of waste treatment have prompted the investigation of environmentally friendly and cheaper methods of treatment using natural products. In this study, G. arborea leaves powder was investigated with a view of using it as cheap material for the biosorption of Pb2+ and Cd2+   from wastewater. The effects of operational parameters like pH, biosorbent dose [g/L], initial metal ions concentration [mg/L], contact time [minutes] and stirring speed [rpm] on the biosorption efficiency [%] were determined. The optimum solution pH for Pb2+ and Cd2+adsorption was 5.0 and peak adsorption of 91.33% and 82.53% for Pb2+ and Cd2+, respectively. 5 g/L Melina leaves were enough to achieve peak removal of both metal ions. The removal of the metal ions was comparatively quick, and stability was achieved after 30 minutes. The optimum stirring speed was 250 rpm for both metal ions. The uptake efficiency of the biosorbent was determined by Langmuir and Freundlich isotherm models. The value of Langmuir isotherm separation parameter [RL] of Pb2+ ion [0.0446 - 0.78125] and Cd2+ [0.1005- 0.9482] were within range of 0 -1 indicating favorable biosorption for both metal ions. The degree of non-linearity [n] values between Pb2+ [12.79] and Cd2+ [11.79] solution concentration and biosorption in Freundlich equation were greater than 1, indicating physical biosorption of Pb2+ and Cd2+ on to G. arborea leaves. G. arborea can serve as efficient biosorbent not only for Pb2+ and Cd2+ ions but also for other heavy metal ions in a wastewater stream


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Dong-Hui Cheng ◽  
Sheng-Ke Yang ◽  
Yue Zhao ◽  
Jing Chen

Adsorption behaviors of oxytetracycline onto sediment in the Weihe River were described. The impact factors in the processes of adsorption, such as contact time, solution pH, temperature, and ionic strength, were determined by experiments. The experimental results were analyzed by kinetic and isotherm models. The adsorption kinetics was found to follow a pseudo-first-order model. The equilibrium adsorption data fitted well with the Langmuir and Freundlich isotherm models. However, the Langmuir isotherm was more suitable to describe the adsorption. Thermodynamics parameters such as Gibbs-free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were calculated. Results showed that the adsorption was feasible, spontaneous, entropy increasing, and endothermic in nature, which reached equilibrium in about 24 hours. The adsorption capacity did not cause obvious change at solution pH 4.0–7.0, and both decreased in solution pH 7.0–10.0 and 4.0–2.0. The presence of electrolytes such as NaCl in aqueous solution had a significant negative effect on the adsorption. The mechanisms controlling the adsorption were supposed to be chemisorption.


2018 ◽  
Vol 77 (10) ◽  
pp. 2355-2368 ◽  
Author(s):  
Khalida Naseem ◽  
Zahoor H. Farooqi ◽  
Muhammad Z. Ur Rehman ◽  
Muhammad A. Ur Rehman ◽  
Robina Begum ◽  
...  

Abstract This review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6. It is an agricultural waste and is regarded as the cheapest biosorbent, having high adsorption capacity for heavy metals as compared to other reported adsorbents, for the treatment of heavy metal polluted wastewater. Adsorption of heavy metal ions onto sorghum biomass follows pseudo second order kinetics. Best fitted adsorption isotherm models for removal of heavy metal ions on sorghum biomass are Langmuir and Freundlich adsorption isotherm models. Thermodynamic aspects of heavy metal ions adsorption onto sorghum biomass have also been elaborated in this review article. How adsorption efficiency of sorghum biomass can be improved by different physical and chemical treatments in future has also been elaborated. This review article will be highly useful for researchers working in the field of water treatment via biosorption processing. The quantitative demonstrated efficiency of sorghum biomass for various heavy metal ions has also been highlighted in different sections of this review article.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2933
Author(s):  
Edgar Pineda Puglla ◽  
Diana Guaya ◽  
Cristhian Tituana ◽  
Francisco Osorio ◽  
María J. García-Ruiz

This study reports the adsorption capacity of lead Pb2+ and cadmium Cd2+ of biochar obtained from: peanut shell (BCM), “chonta” pulp (BCH) and corn cob (BZM) calcined at 500, 600 and 700 °C, respectively. The optimal adsorbent dose, pH, maximum adsorption capacity and adsorption kinetics were evaluated. The biochar with the highest Pb2+ and Cd2+ removal capacity is obtained from the peanut shell (BCM) calcined at 565 °C in 45 min. The optimal experimental conditions were: 14 g L−1 (dose of sorbent) and pH between 5 and 7. The sorption experimental data were best fitted to the Freundlich isotherm model. High removal rates were obtained: 95.96% for Pb2+ and 99.05. for Cd2+. The BCH and BZM revealed lower efficiency of Pb2+ and Cd2+ removal than BCM biochar. The results suggest that biochar may be useful for the removal of heavy metals (Pb2+ and Cd2+) from drinking water.


Sign in / Sign up

Export Citation Format

Share Document