scholarly journals Adsorption Behaviors of Oxytetracycline onto Sediment in the Weihe River, Shaanxi, China

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Dong-Hui Cheng ◽  
Sheng-Ke Yang ◽  
Yue Zhao ◽  
Jing Chen

Adsorption behaviors of oxytetracycline onto sediment in the Weihe River were described. The impact factors in the processes of adsorption, such as contact time, solution pH, temperature, and ionic strength, were determined by experiments. The experimental results were analyzed by kinetic and isotherm models. The adsorption kinetics was found to follow a pseudo-first-order model. The equilibrium adsorption data fitted well with the Langmuir and Freundlich isotherm models. However, the Langmuir isotherm was more suitable to describe the adsorption. Thermodynamics parameters such as Gibbs-free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were calculated. Results showed that the adsorption was feasible, spontaneous, entropy increasing, and endothermic in nature, which reached equilibrium in about 24 hours. The adsorption capacity did not cause obvious change at solution pH 4.0–7.0, and both decreased in solution pH 7.0–10.0 and 4.0–2.0. The presence of electrolytes such as NaCl in aqueous solution had a significant negative effect on the adsorption. The mechanisms controlling the adsorption were supposed to be chemisorption.

2021 ◽  
Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Elmira Kashi ◽  
Zaher Mundher Yaseen ◽  
Zeid A. ALOthman ◽  
...  

Abstract Kaolin clay (KN) was employed as an inorganic filler to modify a cross-linked chitosan-glyoxal as Schiff’s-based chitosan composite derivative (CTS-GLY). The resulting (CTS-GLY/KN) was found to be a promising composite synthetic biopolymer that can be potentially utilized for color removal as well as COD reduction of an industrial anionic dye (remazol brilliant blue R, RBBR). The surface porosity, crystallinity, morphology, functionality, charge, and amine content of the CTS-GLY/KN were studied using BET, XRD, SEM, FTIR, pHpzc and pH-potentiometric titration analyses, respectively. Response surface methodology-Box-Behnken design (RSM-BBD) was used to optimize the impact of the main input factors on the color removal and COD reduction of RBBR. The adsorptive performance CTS-GLY/KN towards RBBR was well-defined by both Langmuir and Freundlich isotherm models with highest adsorption capacity of 447.1 mg/g at 30 ˚C. This finding reveals that CTS-GLY/KN can be utilized as a promising, feasible, and environmentally friendly composite-biosorbent for color removal and COD reduction of textile dyes from aqueous medium.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
J. Ndiritu ◽  
I W. Mwangi ◽  
J. I. Murungi ◽  
R. N. Wanjau

 Anthropogenic activities contribute large amounts of pollutants to the environment which threaten animal and human health. There is increased realization of the effect of these toxins on surface and ground water, consequently, their elimination is vital in rendering secure water for drinking as well as culpable release of effluents to our habitats. Phenolic compounds cause serious health effects to both humans and animals; a p-Nitrophenol concentration of 1 ppb changes the taste and odour of water as well as meat and fish quality. In humans, exposure to PNP causes eye and skin burns while its interaction with blood leads to confusion, cyanosis and unconsciousness. It is imperative therefore to find ways for removing PNP from water. Among the available techniques for removing PNP from water, adsorption is more convenient and offers more advantages because of its design, simplicity, and operating flexibility. The present study involved application of peels of raw Afromomum melegueta (RAM) and quaternised Afromomum melegueta (QAM) to remove PNP from water through adsorption. The raw adsorbents were modified with a quaternary ammonium salt to improve their uptake efficiency. The impact of experimental parameters; contact time, pH, sorbent dose, temperature and concentration were investigated. Attenuated FTIR technique was employed to characterize the adsorbent materials. It was established that the quaternary ammonium compound was anchored chemically within the cellulose structure of Afromomum melegueta peels. The behavior of adsorption of PNP was investigated using Langmuir and Freundlich isotherm models. The physical sorption load was 8.70 and 106.38 mg/g for RAM and QAM peels respectively from Langmuir adsorption equation. Uptake of PNP is high at the first 30 mins of contact and at sorbent dosage of 0.01 g and 0.03 g for RAM and QAM respectively. Quantity of PNP removed increases as the initial concentration rises however, adsorption decreases after a concentration exceeding 30 mg/L. The ideal pH and temperature for PNP removal is at pH 3 and 25 ˚C respectively. In conclusion, the findings suggest that Afromomum melegueta peels can be friendly to the environment, cheap biosorbents and efficient which can be applied for the uptake of PNP from drinking water


Author(s):  
N. O. Ilelaboye ◽  
A. A. Oderinde

Increased anthropogenic activities have led to serious environmental problems due to pollution caused by toxic materials such as heavy metals whose levels are rising in the environment. The inefficiency and high cost of conventional methods of waste treatment have prompted the investigation of environmentally friendly and cheaper methods of treatment using natural products. In this study, G. arborea leaves powder was investigated with a view of using it as cheap material for the biosorption of Pb2+ and Cd2+   from wastewater. The effects of operational parameters like pH, biosorbent dose [g/L], initial metal ions concentration [mg/L], contact time [minutes] and stirring speed [rpm] on the biosorption efficiency [%] were determined. The optimum solution pH for Pb2+ and Cd2+adsorption was 5.0 and peak adsorption of 91.33% and 82.53% for Pb2+ and Cd2+, respectively. 5 g/L Melina leaves were enough to achieve peak removal of both metal ions. The removal of the metal ions was comparatively quick, and stability was achieved after 30 minutes. The optimum stirring speed was 250 rpm for both metal ions. The uptake efficiency of the biosorbent was determined by Langmuir and Freundlich isotherm models. The value of Langmuir isotherm separation parameter [RL] of Pb2+ ion [0.0446 - 0.78125] and Cd2+ [0.1005- 0.9482] were within range of 0 -1 indicating favorable biosorption for both metal ions. The degree of non-linearity [n] values between Pb2+ [12.79] and Cd2+ [11.79] solution concentration and biosorption in Freundlich equation were greater than 1, indicating physical biosorption of Pb2+ and Cd2+ on to G. arborea leaves. G. arborea can serve as efficient biosorbent not only for Pb2+ and Cd2+ ions but also for other heavy metal ions in a wastewater stream


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6100-6120
Author(s):  
Yinan Hao ◽  
Yanfei Pan ◽  
Qingwei Du ◽  
Xudong Li ◽  
Ximing Wang

Armeniaca sibirica shell activated carbon (ASSAC) magnetized by nanoparticle Fe3O4 prepared from Armeniaca sibirica shell was investigated to determine its adsorption for Hg2+ from wastewater. Fe3O4/ASSAC was characterized using XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), and BET (Brunauer–Emmett–Teller). Optimum adsorption parameters were determined based on the initial concentration of Hg2+, reaction time, reaction temperature, and pH value in adsorption studies. The experiment results demonstrated that the specific surface area of ASSAC decreased after magnetization; however the adsorption capacity and removal rate of Hg2+ increased 0.656 mg/g and 0.630%, respectively. When the initial concentration of Hg2+ solution was 250 mg/L and the pH value was 2, the adsorption time was 180 min and the temperature was 30 °C, and with the Fe3O4/ASSAC at 0.05 g, the adsorption reaching 97.1 mg/g, and the removal efficiency was 99.6%. The adsorption capacity of Fe3O4/ASSAC to Hg2+ was in accord with Freundlich isotherm models, and a pseudo-second-order kinetic equation was used to fit the adsorption best. The Gibbs free energy ΔGo < 0,enthalpy change ΔHo < 0, and entropy change ΔSo < 0 which manifested the adsorption was a spontaneous and exothermic process.


2019 ◽  
Vol 953 ◽  
pp. 198-205
Author(s):  
Ji Fu Du ◽  
Zhen Dong ◽  
Xin Yang ◽  
Long Zhao

Glycidyl methacrylate (GMA) was grafted onto the surface of HDPE particles by radiation grafting and emulsion graft copolymerization. And subsequent ring-opening reaction of expoxy groups in poly-GMA graft chains with N-methylglucamine (NMG) was conducted to synthesis the boron adsorbent. The synthesis condition (radiation dose and NMG concentration) was optimized and characterized by IR and SEM. Adsorption behaviors of the boron adsorbent for boron removal presented that adsorption kinetics was well described by pseudo-second-order kinetic mode. The adsorption isothermal was well fitted with both Langmuir and Freundlich isotherm models. The adsorption capacity for boron reached 15.63 mg/g at optimal pH 8. Dynamic experiment revealed that boron could be efficiently adsorbed by the boron adsorbent and fully desorbed using 13 BV of 1 mol/L HCl.


2019 ◽  
Vol 81 ◽  
pp. 01003
Author(s):  
Hongjie Gao ◽  
Peng Yuan ◽  
Ruixia Liu ◽  
Lu Han ◽  
Yonghui Song

In this study, the assessment of nationwide urban water environment status was conducted based upon a method of integrating both 70% of objective water quality and 30% of standard compliance percent compared with national standard limit of GB3838-2002 for Class III. The impact factors on urban water environment status were discussed. The results showed that the status of urban water environment could be graded into 5 types in China. The population density, water resources, urbanized areas and so on were key impact factors on water environment. The study found that population density and urban built-up area had significantly negative effect on urban water environment status, and there was positive relationship between per capita water resources and urban water environment status. The results would provide the guidance for effective governance and management of urban water environment at national level.


2019 ◽  
Vol 9 (21) ◽  
pp. 4486 ◽  
Author(s):  
Candelaria Tejada-Tovar ◽  
Angel Darío Gonzalez-Delgado ◽  
Angel Villabona-Ortiz

The removal of water pollutants has been widely addressed for the conservation of the environment, and novel materials are being developed as adsorbent to address this issue. In this work, different residual biomasses were employed to prepare biosorbents applied to lead (Pb(II)) ion uptake. The choice of cassava peels (CP), banana peels (BP), yam peels (YP), and oil palm bagasse (OPB) was made due to the availability of such biomasses in the Department of Bolivar (Colombia), derived from agro-industrial activities. The materials were characterized by ultimate and proximate analysis, Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller analysis (BET), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS) in order to determine the physicochemical properties of bioadsorbents. The adsorption tests were carried out in batch mode, keeping the initial metal concentration at 100 ppm, temperature at 30 °C, particle size at 1 mm, and solution pH at 6. The experimental results were adjusted to kinetic and isotherm models to determine the adsorption mechanism. The remaining concentration of Pb(II) in solution was measured by atomic absorption at 217 nm. The functional groups identified in FTIR spectra are characteristic of lignocellulosic materials. A high surface area was found for all biomaterials with the exception of yam peels. A low pore volume and size, related to the mesoporous structure of these materials, make these bioadsorbents a suitable alternative for liquid phase adsorption, since they facilitate the diffusion of Pb(II) ions onto the adsorbent structure. Both FTIR and EDS techniques confirmed ion precipitation onto adsorbent materials after the adsorption process. The adsorption tests reported efficiency values above 80% for YP, BP, and CP, indicating a good uptake of Pb(II) ions from aqueous solution. The results reported that Freundlich isotherm and pseudo-second order best fit experimental data, suggesting that the adsorption process is governed by chemical reactions and multilayer uptake. The future prospective of this work lies in the identification of alternatives to reuse Pb(II)-contaminated biomasses after heavy metal adsorption, such as material immobilization.


2016 ◽  
Vol 78 (1-2) ◽  
Author(s):  
Nik Ahmad Nizam Nik Malek ◽  
Nurain Mat Sihat ◽  
Mahmud A. S. Khalifa ◽  
Auni Afiqah Kamaru ◽  
Nor Suriani Sani

In the present study, the adsorption of acid orange 7 (AO7) dye from aqueous solution by sugarcane bagasse (SB) and cetylpyridinium bromide (CPBr) modified sugarcane bagasse (SBC) was examined. SBC was prepared by reacting SB with different concentrations (0.1, 1.0 and 4.0 mM) of cationic surfactant, CPBr. The SB and SBC were characterized using Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments were carried out in a batch mode. The effect of initial AO7 concentrations (5-1000 mg/L), initial CPBr concentrations and pH of AO7 solution (2-9) on the adsorption capacity of SB and SBC were investigated. The experimental adsorption data were analyzed using Langmuir and Freundlich isotherm models. The adsorption of AO7 onto SB and SBC followed Freundlich and Langmuir isotherm models, respectively. The maximum uptake of AO7 was obtained by SBC4.0 (SB treated with 4.0 mMCPBr) with the adsorption capacity of 144.928 mg/g. The highest AO7 removal was found to be at pH 2 and 7 for SB and SBC, respectively. As a conclusion, sugarcane bagasse modified with CPBr can become an alternative adsorbent for the removal of anionic compounds in aqueous solution.


2017 ◽  
Vol 76 (7) ◽  
pp. 1697-1705 ◽  
Author(s):  
Tiecheng Guo ◽  
Sicong Yao ◽  
Hengli Chen ◽  
Xin Yu ◽  
Meicheng Wang ◽  
...  

Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer–Emmett–Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4–6) and around 98% for MB in a very wide pH range (pH = 2–12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions’ removal than dyes’.


2021 ◽  
Vol 13 (2) ◽  
pp. 10-31
Author(s):  
Saba A. Saeed1 ◽  
◽  
Dunya E. AL-Mammar2 ◽  

This study examined the adsorption behavior of anionic dye (orange G) from aqueous solution onto the raw and activated a mixture of illite, kaolinite and chlorite clays from area of Zorbatiya (east of Iraq).The chemical treatment involved alkali and acid activation. The alkali activation obtained by treated the raw clay (RC) with 5M NaOH (ACSO) and the acid activation founded by treated it with 0.25M HCl (ACH) and 0.25M H_2 〖SO〗_4 (ACS). The thermal treatment carried out by calcination the produce activated clay at 750oC for acid activation and 105oC for alkali activation. Batch adsorption method was used to study the adsorption of orange G dye onto raw and activated clays. The impact of different factors related to the adsorption process was studied such as: agitation time, clay dosage, solution pH, starting OG dye concentration, temperature and ionic strength. The adsorption process was described by using Langmuir, Freundlich, Temkin and Dubinin-Raduchkevish isotherm models. Thermodynamic functions like change in enthalpy〖∆H〗^°, change in entropy 〖∆S〗^° and change in Gibbs free energy 〖∆G〗^°were estimated based on Vanʼt Hoff equation.


Sign in / Sign up

Export Citation Format

Share Document