scholarly journals Antifungal activity of essential oils and their volatile constituents against respiratory tract pathogens causing Aspergilloma and Aspergillosis by gaseous contact

2012 ◽  
Vol 4 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Veena Uniyal ◽  
R. P. Bhatt ◽  
Seema Saxena ◽  
Amitabh Talwar

Aspergillosis is an acute chronic and rapidly fatal disease which is not contagious. Invasive Aspergillosis is often found in severely immuno-suppressed patients, and is characterized by invasion of blood vessels which can result into dissemination to other organs. Aspergilloma is a fungal ball that develops in previous cavitary lung lesions. Essential oils and their volatile constituents have been used as antifungal, anti-infectious and antimicrobial agents. Inhalation of vapours of the essential oils kill invaders attached to the inner respiratory lining and worksynergistically with the body defences. In this study, 16 essential oils were used against Aspergillus niger and A. fumigatus of which about 14 oils proved to be effective. Results showed that the most effective oils against both Aspergillus species were found to be of Cinnamomum zeylanicum (Cinnamon), Syzygium aromaticum (Clove), Carum carvi (Caraway), Cymbopogon citrates (Lemongrass), Foeniculum vulgare (Fennel) and Myristica fragrans (Nutmeg). Moderately effective oils were of Gaultheria procumbens (Wintergreen), Pinus palustris (Turpentine), Sesamum indicum (Sesame), Trachyspermum ammi (Ajowain) and Origanum vulgare (Oregano). The oils of Lavandula augustifolia (Lavender), Elletaria cardamomum (Cardamon) and Cymbopogon nardus (Citronella) showed minimum activity. Azadirachta indica (Neem) and Linum usitatissimum (Linseed) showed no activity giving no inhibition zones.

2007 ◽  
Vol 76 (3) ◽  
pp. 357-361 ◽  
Author(s):  
Š. Faix ◽  
Š. Juhas ◽  
Z. Faixová

The aim of this study was to determine the effects of four essential oils intake by feed, namely Origanum vulgare, Thymus vulgaris, Cinnamomum zeylanicum Ness, and Syzygium aromaticum on antioxidant status in mice in vivo. Essential oils were in the aether oleum form. They were diluted with ethanol absolute mixed with ground pelett (0.1, 0.25, 0.57 and 1% concentration) and thereafter ethanol was evaporated. SOD, GPx activities and TAS were measured in erythrocytes and plasma spectrophotometrically with Ransod, Ransel and TAS kits from RANDOX, respectively. GPX activity showed a significant increase in 0.25% and 0.1% concentration of Origani aetheroleum. The GPx activities were decreased in 1% concentration of Thymi aetheroleum and 0.57% concentration of Cinnamomi aetheroleum and 0.57% concentration of Caryophylli aetheroleum. The total antioxidant status showed a significant decrease in 1 % concentration of Origani aetheroleum and significantly increased in 0.1% concentration. The same results were found in Thymi aetheroleum. Cinnamomi aetheroleum and Caryophylli aetheroleum had not effect on total antioxidant status. SOD activities were not significantly changed after intake of essential oils. In conclusion, our results showed, that concentration of essential oil is very important for antioxidant status and also for metabolism of mice, because a high dose of essential oil has adverse effect on metabolism of mice, representated by a lower growth of the body weight. On the other hand, essential oils at lower concentrations have positive effect on antioxidant status of mice.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 352 ◽  
Author(s):  
Pavel Horky ◽  
Sylvie Skalickova ◽  
Kristyna Smerkova ◽  
Jiri Skladanka

Essential oils (EOs) are now a hot topic in finding modern substitutes for antibiotics. Many studies have shown positive results and confirmed their high antibacterial activity both in vitro and in vivo. Deservedly, there is an attempt to use EOs as a substitute for antibiotics, which are currently limited by legislation in animal breeding. Given the potential of EOs, studies on their fate in the body need to be summarized. The content of EO’s active substances varies depending on growing conditions and consequently on processing and storage. Their content also changes dynamically during the passage through the gastrointestinal tract and their effective concentration can be noticeably diluted at their place of action (small intestine and colon). Based on the solubility of the individual EO’s active substances, they are eliminated from the body at different rates. Despite a strong antimicrobial effect, some oils can be toxic to the body and cause damage to the liver, kidneys, or gastrointestinal tissues. Reproductive toxicity has been reported for Origanum vulgare and Mentha arvensis. Several publications also address the effect on the genome. It has been observed that EOs can show both genoprotective effects (Syzygium aromaticum) and genotoxicity, as is the case of Cinnamomum camphor. This review shows that although oils are mainly studied as promising antimicrobials, it is also important to assess animal safety.


2014 ◽  
Vol 83 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Katarína Kuzyšinová ◽  
Dagmar Mudroňová ◽  
Juraj Toporčák ◽  
Radomíra Nemcová ◽  
Ladislav Molnár ◽  
...  

American foulbrood is a dangerous world-wide spread disease of honey bees caused by the Paenibacillus larvae bacterium. Antibiotic treatments are less effective and leave residues in bee products. It is therefore necessary to find an alternative, especially using natural ingredients such as plant essential oils, probiotics, fatty or organic acids. Two strains of P. larvae were used for this study: CCM 4488, a strain from the Czech collection of micro-organisms and a Slovak field strain which was isolated from infected bee combs and characterized on the basis of biochemical properties. Plant essential oils of sage (Salvia officinalis), anise (Pimpinella anisum), oregano (Origanum vulgare), caraway (Carum carvi), thyme (Thymus vulgaris), rosemary (Rosmarinum officinalis), clove (Syzygium aromaticum), camomile (Chamomilla recutita) and fennel (Foeniculum vulgare) were used for the testing of the inhibitory activity against P. larvae. Essential oils at amounts of 5 µl and 10 µl were applied to sterile discs on MYPGP agar; inhibition zone diameters were measured after 24-h incubation at 37 °C. The strongest inhibitory activity against both P. larvae strains was noted in case of the essential oils from oregano, thyme and clove; essential oils from camomile, rosemary and fennel showed no or weak antibacterial activity. Medium strong inhibition activity was recorded in case of previously untested essential oil from Carum carvi. There was a difference in sensitivity of both tested strains to essential oils. Our study confirmed that some essential oils can be used in the prevention of American foulbrood but further experiments aimed at their influence on physiological intestinal microflora of honey bees must be performed.


Author(s):  
Matěj Božik ◽  
Pavel Nový ◽  
Pavel Klouček

Essential oils are volatile substances from plants and many of them have antimicrobial activity. For that reason, they have become known as a useful alternative to chemical preservatives and pesticides. In this study, we tested essential oils of four aromatic plants. Cinnamon (Cinnamomum zeylanicum), thyme (Thymus vulgaris), oregano (Origanum vulgare) and clove (Syzygium aromaticum) essential oils were investigated for their composition and antimicrobial effect against plant pathogenic bacteria (Pectobacterium spp. and Pseudomonas spp.). Both are commonly associated with diseased fruit trees in orchards and gardens. The chemical composition of the tested essential oils was identified by gas chromatography coupled with mass spectrometry. The cinnamon essential oil was most effective form tested oil. The experimental results indicated that the wild strains of tested bacteria are more resistant to essential oils than commonly used laboratory strains. In conclusion, certain essential oils could be used for the control of postharvest bacterial pathogens. The findings of the present study suggest that the essential oils have a potential to be used as antimicrobial agents.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1270 ◽  
Author(s):  
Simona Nardoni ◽  
Basma Najar ◽  
Baldassare Fronte ◽  
Luisa Pistelli ◽  
Francesca Mancianti

Saprolegnia spp. water molds severely impact fish health in aquaculture, fish farms and hobby fish tanks colonizing mature and immature stages of fishes, as well as eggs. Considering that there are no drugs licensed for treating and/or control the organism, efficient and environmental low-impact methods to control these oomycetes in aquaculture are needed. The aim of the present report was to evaluate the in vitro sensitivity of Saprolegnia parasitica to essential oils (EOs) from Citrus aurantium L., Citrus bergamia Risso et Poiteau, Citrus limon Burm. f., Citrus paradisi Macfad, Citrus sinensis Osbeck, Cinnamomum zeylanicum Blume, Cymbopogon flexuosum (Nees ex Steud.) Watson, Foeniculum vulgare Mill., Illicium verum Hook.f., Litsea cubeba (Lour.) Pers., Origanum majorana L., Origanum vulgare L., Pelargonium graveolens L’Hér., Syzygium aromaticum Merr. & L.M.Perry, and Thymus vulgaris L., by microdilution test. The most effective EOs assayed were T. vulgaris and O. vulgare, followed by C. flexuosum, L. cubeba and C. bergamia. These EOs could be of interest for controlling Saprolegnia infections. Nevertheless, further safety studies are necessary to evaluate if these products could be dispersed in tank waters, or if their use should be limited to aquaculture supplies.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 515
Author(s):  
Ruth Dudek-Wicher ◽  
Justyna Paleczny ◽  
Beata Kowalska-Krochmal ◽  
Patrycja Szymczyk-Ziółkowska ◽  
Natalia Pachura ◽  
...  

Biofilms are surface-attached, structured microbial communities displaying higher tolerance to antimicrobial agents in comparison to planktonic cells. An estimated 80% of all infections are thought to be biofilm-related. The drying pipeline of new antibiotics efficient against biofilm-forming pathogens urges the search for alternative routes of treatment. Essential Oils (EOs), extracted from medicinally important plants, are a reservoir of bioactive compounds that may serve as a foothold in investigating novel antibiofilm compounds. The aim of this study was to compare antimicrobial activity of liquid and volatile fractions of tested EOs against biofilm-forming pathogens using different techniques. In this research, we tested five EOs, extracted from Syzygium aromaticum L., Boswelia serrata Roxb., Juniperus virginiana L., Pelargonium graveolens L. and Melaleuca alternifolia Cheel., against planktonic and biofilm forms of five selected reference strains, namely Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. To obtain cohesive results, we applied four various methodological approaches: to assess the activity of the liquid fraction of EOs, disc diffusion and the microdilution method were applied; to test EOs’ volatile fraction, the AntiBioVol assay and modified Antibiofilm Dressing Activity Measurement (A.D.A.M.) were used. The molecular composition and dynamics of antimicrobial substances released from specific EOs was measured using Gas Chromatography–Mass Spectrometry (GC-MS). The antimicrobial potency of EO’s volatile fraction against biofilm formed by tested strains differed from that of the liquid fraction and was related to the molecular weight of volatile compounds. The liquid fraction of CW-EO and volatile fraction of F-EO acted in the strongest manner against biofilm of C. albicans. The addition of 0.5% Tween 20 to liquid phase, enhanced activity of G-EO against E. coli and K. pneumoniae biofilm. EO activity depended on the microbial species it was applied against and the chosen assessment methodology. While all tested EOs have shown a certain level of antimicrobial and antibiofilm effect, our results indicate that the choice of EO to be applied against a specific biofilm-forming pathogen requires careful consideration with regard to the above-listed aspects. Nevertheless, the results presented in this research contribute to the growing body of evidence indicating the beneficial effects of EOs, which may be applied to fight biofilm-forming pathogens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicholas John Sadgrove ◽  
Guillermo Federico Padilla-González ◽  
Olga Leuner ◽  
Ingrid Melnikovova ◽  
Eloy Fernandez-Cusimamani

This commentary critically examines the modern paradigm of natural volatiles in ‘medical aromatherapy’, first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.


2021 ◽  
Vol 33 (4) ◽  
pp. 98-106
Author(s):  
Ahmed S.A. Al-Obaidi ◽  
Ayad B. Mahmood ◽  
Zaid K. Khidhir ◽  
Hemn G. Zahir ◽  
Ziyad T. Al-doori ◽  
...  

The effect of drenching Awassi lambs with three aromatic essential oils from sage (Salvia officinalis L.), clove (Syzygium aromaticum L.), and laurel (Laurus nobilis L.) was investigated on meat chemical and physical characteristics, and oxidative and deterioration measurements. Twenty-four Awassi lambs, five to six months old, were divided into four groups. A concentrated diet was provided to the lambs at a rate of 3% of the body weight. The treatments were as follows: T1 was served as the untreated control, while T2, T3, and T4 were drenched with oils of sage, clove, and laurel, respectively. Drenching was carried out using water-soluble capsules containing 500 mg oil/capsule/day. Treatments lasted 90 days. At the end of the treatment period, the animals were fasted overnight and slaughtered. The carcasses were cleaned and kept at 4°C for 24 h. The longissimus dorsi (LD) muscle was then separated and preserved in a plastic bag for three preservation periods: no freezing and 30 days and 60 days freezing at −18°C. Several physical, fat, and protein stability analyses of meat were done after the preservation periods. The results indicated no significant effect of drenching Awassi lambs with different aromatic essential oils on the meat’s physical and chemical characteristics. However, these oils, especially clove oil, affected fat and protein stability with increasing preservation period by freezing.


2010 ◽  
Vol 65 (11-12) ◽  
pp. 660-666 ◽  
Author(s):  
Jie-fang Kang ◽  
Yuan Zhang ◽  
Yong-liang Du ◽  
Zhe-zhi Wang

We examined the composition and antimicrobial activity of two essential oils from Chloranthus japonicus Sieb. and Chloranthus multistachys Pei. GC-FID and GC-MS analyses identifi ed 48 and 39 compounds, which represented 95.56% and 94.58%, respectively, of all components in these oils. Of these, 28 compounds were common to both, with a relatively high amount of oxygenated monoterpenes (50.95% and 39.97%). Antimicrobial properties were evaluated in vitro via disc diffusion and microbroth dilution assays. Activities were strong against most tested microorganisms, with inhibition zones ranging from 8.1 to 22.2 mm. For both species, minimum values for inhibitory and bactericidal concentrations were 0.39 to 12.50 mg/mL and 0.78 to 50.00 mg/mL, respectively. These results suggest that these essential oils are potent natural sources of antimicrobial agents for the medicinal and pharmaceutical industries


2019 ◽  
Vol 30 (3) ◽  
pp. 16-22

World Health Organization (WHO) estimated that 80% of the population of developing countries use traditional medicines, mostly natural plant products, for their primary health care needs. In the past few decades, the medicinal value of plants has been assumed more important dimension owing largely to the discovery that extracts from plants contain not only primary metabolites but also a diverse array of secondary metabolites with antioxidant potential. Medicinal plants are potential sources of natural compounds with biological activities and therefore attract the attention of researchers worldwide. Antioxidants are vital substances which possess ability to protect the body from damage due to free radical-induced oxidative stress. The purpose of current study was to determine the antioxidant activities and bioactive components of Foeniculum vulgare (fennel) (Samonsabar) seeds by using UV Visible Spectrophotometer (UV-Vis) and Gas Chromatography-Mass Spectrometry (GC-MS). Aqueous extract of fennel seeds showed more antioxidant activity (IC50: 0.28 ug/ml) than ethanolic extract (IC50: 0.83 ug/ml) and comparable to standard antioxidant, ascorbic acid (IC50: 0.59 ug/ml). GC-MS analysis was fruitful in identification of compounds based on peak area, retention time, molecular formula, molecular weight, MS Fragmentions and pharmacological actions. Ten bioactive phytochemical compounds from aqueous extracts and 11 from ethanolic extract of fennel seeds were identified. These findings indicated that fennel seeds are potential to provide preventive properties against oxidative damage. These results will give scientific information for quality control of indigenous drug to herbal medicine users and local practitioners using fennel for different types of ailments


Sign in / Sign up

Export Citation Format

Share Document