scholarly journals Optimization and Modeling the Performance of a Mediator-less Microbial Fuel Cell using Butler-Volmer-Monod Model

2020 ◽  
Vol 26 (9) ◽  
pp. 83-94
Author(s):  
Rusul Muaffaq Khazaal ◽  
Zaineb Ziad Ismail

In this study, a one-dimensional model represented by Butler-Volmer-Monod (BVM) model was proposed to compute the anode overpotential and current density in a mediator-less MFC system. The system was fueled with various organic loadings of real field petroleum refinery oily sludge to optimize the favorable organic loading for biomass to operate the suggested system. The increase in each organic loading showed higher resistance to electrons transport to the anode represented by ohmic loss. On the contrary, both activation and mass transfer losses exhibited a noticeable decrement upon the increased organic loadings. However, current density was improved throughout all increased loads achieving a maximum current density of 5.2 A/m3. The BVM model perfectly expressed the bioelectrochemical reactions in the anodic-chamber. The experimental measurements for all the studied organic loadings agreed with the model predicted values by an estimated determination factor (R2) of 0.96, proving the validity of the proposed mathematical model to express the anodic bioelectrochemical reactions in the MFC. Also, the sustainable power generated from each cycle was evaluated, and it was found that higher sustainable energy can be harvested from higher organic loading 1000 g/L, which achieved maximum sustainable energy of 0.83 W/m3.

2021 ◽  
Vol 11 (15) ◽  
pp. 6920
Author(s):  
Oldřich Coufal

Two infinitely long parallel conductors of arbitrary cross section connected to a voltage source form a loop. If the source voltage depends on time, then due to induction there is no constant current density in the loop conductors. It is only recently that a method has been published for accurately calculating current density in a group of long parallel conductors. The method has thus far been applied to the calculation of steady-state current density in a loop connected to a sinusoidal voltage source. In the present article, the method is used for an accurate calculation of transient current using transient current density. The transient current is analysed when connecting and short-circuiting the sources of sinusoidal, constant and sawtooth voltages. For circular cross section conductors, the dependences of maximum current density, maximum current and the time of achieving steady state on the source frequency, the distance of the conductors and their resistivity when connecting the source of sinusoidal voltage are examined.


Author(s):  
Jeremy F. Chignell ◽  
Hong Liu

The manufacture of biodiesel generates 10 wt% of glycerol as a byproduct. Currently, the majority of this waste glycerol is treated in wastewater treatment plants or incinerated. In this study, single chamber, membrane-free microbial electrolysis cells (MECs) was evaluated to produce hydrogen from pure glycerol and waste glycerol. At an applied voltage of 0.6 V, a maximum current density of 7.5 ± 0.4 A/m2 (238.6 ± 12.7 A/m3) was observed, the highest reported current density for a microbial electrochemical system operating on glycerol. Maximum current densities on 0.5% waste glycerin were 0.1–0.2 A/m2, much lower than those on pure glycerol, possibly due to the high salt and soap concentration in the waste glycerol. The maximum hydrogen yield on 50 mM glycerol was 1.8 ± 0.1 mol hydrogen/mol glycerol at a hydrogen production rate of 1.3 ± 0.1 m3/day/m3. The presence of methanol in the waste glycerin reduced hydrogen yield by nearly 30%. The energy efficiency on 0.5% of waste glycerol reached 200% at an applied voltage of 0.6 V. Conversion of all of the waste glycerol currently generated annually in global biodiesel manufacture to hydrogen using optimized MEC technology could generate ∼ 180 million kg of H2, representing a value of nearly $540 million, or the amount of H2 required for the production of 4.8 billion kg of green diesel. This study indicates that the generation of useful products (such as hydrogen) from waste glycerol will greatly increase the viability of the growing biodiesel industry.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2542-2550

In this modern epoch Sustainable Energy Resources (SER) takes an upper hand in meeting the rise in power demand. Over the last few years, the increasing electrical power demand has prompted an incredible need for power from sustainable energy sources. The irradiation from solar, wind turbines are pondered as the main source of power generation since they supplement one another. For the general development of the economy, it is important that the agro-based economy would lead to the growth of the country. It is neither achievable nor affordable to dispatch power in the far away locales for a scarcely populated town. In this paper, the supplanting of energy sources with the sustainable power sources utilizing HOMER programming is performed. An independent sustainable power sources (ISPS) is used to meet the load and the cost is evaluated. The work is performed for real time data under different schemes like PV, wind and its combination. The optimization of operating cost under two scenario of using the ISPS (either PV or Wind) and using both PV & wind for real-time input taken from Sicud village in Philippines and Laboratory load data of SRMIST in India is performed. The comparison of the operating cost for the two region under two cases is executed and analyzed.


2012 ◽  
Vol 569 ◽  
pp. 82-87
Author(s):  
Yi Li ◽  
Xiu Chen Zhao ◽  
Ying Liu ◽  
Hong Li

Three dimensional thermo-electrical finite element analysis was employed to simulate the current density and temperature distributions for solder bump joints with different bump shapes. Mean-time-to-failure (MTTF) of electromigration was discussed. It was found that as the bump volume increased from hourglass bump to barrel bump, the maximum current density increased but the maximum temperature decreased. Hourglass bump with waist radius of 240 μm has the longest MTTF.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000078-000084
Author(s):  
Hao Zhuang ◽  
Robert Bauer ◽  
Markus Dinkel

Abstract In the power semiconductor industry, there is continuous development towards higher maximum current capability of devices while device dimensions shrink. This leads to an increase in current density which the devices have to handle, and raises the question if electromigration (EM) is a critical issue here. Generally, an EM failure can be described by the Black’s equation with temperature and current density as the main influencing factors. Normally, the current that the power packages need to handle lies in the range of 100 A. However, it should be noted that power devices exhibit asymmetric sizes of drain and source contacts. This may lead to higher current density at the source leads (area ratio drain/source: ~8x for QFN 5×6). Nevertheless, the source lead area is still much larger than that of the flip chip bumps (i.e., 28 times larger compared to a 100 μm micro-bump). This typically enhances the safety of the power device with respect to EM. However, with regard to future development towards higher maximum current capability, we intended to investigate further on the EM of power devices. In the present work, we focused on the PQFN 5×6 package to study the EM behavior of a power device soldered on a Printed Circuit Board (PCB). We employed the highest current (120 A) and temperature (150 °C) that the stress test system could handle to study EM in accelerated mode. First fails occurred after ~1200 h, which was much earlier than expected from previous flip-chip investigations. In addition, we found separation gaps in the solder joint between drain contact and PCB, which experienced the lowest current density in the whole test. Contradictorily, we observed only minor solder degradation at the source interface, regardless of the higher current density there. Nevertheless, the separating metal interfaces still correlated well with the current direction. Thermal simulations revealed that due to the self-heating of the device by the high current applied, both the drain and source leads were exposed to much higher temperatures (Tmax = 168 °C) than the PCB board which was kept under temperature control at 150 °C. This temperature difference resulted in a thermal gradient between the device and PCB which, in turn, triggered thermal migration (TM) in addition to EM. As TM for the drain contact occurred in the same direction as EM, it enhanced the degradation effect and therefore led to a shorter time-to-failure at the drain. In contrast to this, such an enhanced effect did not occur at the source side. As a result, we observed higher solder degradation at the drain side, which we did confirm by switching the current direction in the test. To minimize the TM effect, a special EM test vehicle, which used a Cu plate instead of the MOSFET chip, was designed and fabricated. Thermal simulation verified that the device operated at similar temperatures as the PCB board. Using this setup, it was possible to study EM in an accelerated mode and, thus, investigate the pure EM behavior of the power device.


Author(s):  
Tao Zhang ◽  
Pei-Wen Li ◽  
Qing-Ming Wang ◽  
Laura Schaefer ◽  
Minking K. Chyu

Two types of miniaturized PEM fuel cells are designed and characterized in comparison with a compact commercial fuel cell device in this paper. One has Nafion® membrane electrolyte sandwiched by two brass bipolar plates with micromachined meander-like gas channels. The cross-sectional area of the gas flow channel is approximately 250 by 250 (μm). The other uses the same Nafion® membrane and anode structure, but in stead of the brass plate, a thin stainless steel plate with perforated round holes is used at cathode side. The new cathode structure is expected to allow oxygen (air) being supplied by free-convection mass transfer. The characteristic curves of the fuel cell devices are measured. The activation loss and ohmic loss of the fuel cells have been estimated using empirical equations. Critical issues such as flow arrangement, water removing and air feeding modes concerning the fuel cell performance are investigated in this research. The experimental results demonstrate that the miniaturized fuel cell with free air convection mode is a simple and reliable way for fuel cell operation that could be employed in potential applications although the maximum achievable current density is less favorable due to limited mass transfer of oxygen (air). The relation between the fuel cell dimensions and the maximum achievable current density is also discussed with respect to free-convection mode of air feeding.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1991
Author(s):  
Jun Dai ◽  
Yikun Ding ◽  
Cunjun Ruan ◽  
Xiangyan Xu ◽  
Hulin Liu

High photocurrent density cathodes that enable small cross-section electron beams are required for high-power terahertz vacuum devices. Multi-alkali antimonide photocathodes may be well suited for generating sub-mm electron beam sources. This paper involves the repeatability, stability, uniformity, and linearity experiments of the multi-alkali antimonide photocathodes electron emission operations under a continuous-wave 450 nm laser with a bias voltage of 5000 V. The effect of heat, electric contact, and cathode surface roughness to emission characterizations is analyzed. The methods to maintain the high-current-density emission and avoid the fatigue of the photocathode are verified. The emission can be repeated with increased optical power. The stable photocurrent density of near 1 A/cm2 and maximum current density of near 1.43 A/cm2 is recorded. The continuous photocurrent density is significantly improved compared to the current density reported in traditional applications. It is found that the current curves measuring at different areas of the photocathode differ greatly after the laser power of 800 mW. The increase in current for some areas may be attributed to the conductive current caused by built-in electric fields between the emission rough area and its adjacent areas.


2015 ◽  
Vol 15 (10) ◽  
pp. 7717-7721
Author(s):  
Young Pyo Jeon ◽  
Tae Whan Kim

The electrical and the optical properties of tandem organic light-emitting devices (OLEDs) with stacked electroluminescence units were investigated to clarify the charge-generation mechanisms due to the existence of a charge-generation layer (CGL). The current density of the current limited devices with an 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) CGL was 35% higher than that of devices with a tungsten-oxide (WO3) CGL. The maximum current density of the current limited devices with a HAT-CN CGL was as high as 259 mA/cm2. The brightness of the tandem OLEDs with a HAT-CN CGL was 15% higher than that of the tandem OLEDs with a WO3 CGL due to an increase in the current density. The charge-generation mechanisms of tandem OLEDs with a CGL were described on the basis of the experimental results.


Sign in / Sign up

Export Citation Format

Share Document