scholarly journals Effective quality control of a municipal wastewater treatment plant using Geographic information systems: A Review

2021 ◽  
Vol 27 (7) ◽  
pp. 66-72
Author(s):  
Rusol Mohammed Mohsin ◽  
Basim Huseen Khudair ◽  
Athraa Hashim Mohammed

Inefficient wastewater disposal and wastewater discharge problems in water bodies have led to increasing pollution in water bodies.  Pollutants in the river contribute to increasing the biological oxygen demand (BOD), total suspended solids (SS), total dissolved solids (TDS), chemical oxygen demand (COD), and toxic metals render this water unsuitable for consumption and even pose a significant risk to human health. Over the last few years, water conservation has been the subject of growing awareness and concern throughout the world, so this research focused on review studies of researches that studied the importance of water quality of wastewater treated disposal in water bodies and modern technology to management wastewater disposals.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
A. Vantarakis ◽  
S. Paparrodopoulos ◽  
P. Kokkinos ◽  
G. Vantarakis ◽  
K. Fragou ◽  
...  

The objective of the study was to investigate the impact on the quality of life of people living close to a municipal wastewater treatment plant. A case control study, including 235 inhabitants living within a 500 m radius by a municipal wastewater treatment plant (cases) and 97 inhabitants living in a different area (controls), was conducted. A standardized questionnaire was self-completed by the participants which examined the general health perception and the overall life satisfaction. Also, the concentration of airborne pathogenic microorganisms in aerosol samples collected around the wastewater treatment plant was investigated. Significant risk for symptoms such as headache, unusual tiredness, and concentration difficulties was recorded and an increased possibility for respiratory and skin diseases was reported. A high rate of the cases being irritable and moody was noticed. Significantly higher gastrointestinal symptoms were also reported among the cases in relation to the controls. The prevalence of pathogenic airborne microorganisms originating from the wastewater treatment plant was reported in high numbers in sampling points close to the wastewater treatment plant. More analytical epidemiological investigations are needed to determine the cause as well as the burden of the diseases to inhabitants living surrounding the wastewater treatment plant.


2019 ◽  
Vol 80 (9) ◽  
pp. 1654-1661
Author(s):  
J. Tauber ◽  
V. Parravicini ◽  
K. Svardal ◽  
J. Krampe

Abstract In this research, sources of methane emissions of an anaerobic digester (AD) system at a municipal wastewater treatment plant (WWTP) with 260,000 population equivalent (PE) capacity were detected by a non-dispersive infrared (NDIR) camera. The located emissions were evaluated qualitatively and were documented with photographs and video films. Subsequently, the emission sources were quantified individually using different methods like the Flux-Chamber method and sampling from the digester's circulation pipe. The dissolved methane in the sludge digester was measured via gas chromatography-mass spectrometry (GC-MS) and 6.8% oversaturation compared to the equilibrium after Henry's law was found. Additionally, the residual gas potential of the digestate was measured using batch tests with 10 days' additional stabilisation time. The PE-specific residual gas production of the full-scale AD was calculated to 12.4 g CH4/(PE · y). An extended chemical oxygen demand (COD) balance including methane emissions for the whole digester system was calculated. Also the measured methane loads were calculated and summed up. The total methane loss of the AD was calculated at 24.6 g CH4/(PE · y), which corresponds to 0.4% of the produced biogas (4,913 g CH4/(PE · y)). PE-specific methane emission factors are presented for each investigated (point) source like the sludge outlet at the digester's head, a leaking manhole sealing and cracks in the concrete structure.


2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.


2018 ◽  
Vol 77 (11) ◽  
pp. 2723-2732 ◽  
Author(s):  
Xiaowei Zheng ◽  
Shenyao Zhang ◽  
Jibiao Zhang ◽  
Deying Huang ◽  
Zheng Zheng

Abstract With the improvement of wastewater discharge standards, wastewater treatment plants (WWTPs) are continually undergoing technological improvements to meet the evolving standards. In this study, a quartz sand deep bed denitrification filter (DBDF) was used to purify WWTP secondary effluent, utilizing high nitrate nitrogen concentrations and a low C/N ratio. Results show that more than 90% of nitrate nitrogen (NO3-N) and 75% of chemical oxygen demand (COD) could be removed by the 20th day of filtration. When the filter layer depth was set to 1,600 mm and the additional carbon source CH3OH was maintained at 30 mg L−1 COD (20 mg L−1 methanol), the total nitrogen (TN) and COD concentrations of DBDF effluent were stabilized below 5 and 30 mg L−1, respectively. Analysis of fluorescence revealed that DBDF had a stronger effect on the removal of dissolved organic matter (DOM), especially of aromatic protein-like substances. High throughput sequencing and qPCR results indicate a distinctly stratified microbial distribution for the main functional species in DBDF, with quartz sand providing a good environment for microbes. The phyla Proteobacteria, Bacteroidetes, and Chloroflexi were found to be the dominant species in DBDF.


2019 ◽  
Vol 252 ◽  
pp. 09009
Author(s):  
Dariusz Majerek ◽  
Sylwia Duda ◽  
Roman Babko ◽  
Marcin K. Widomski

The assessment of the ratio of self-purification processes in the natural environment, including the water bodies of streams and rivers is possible by the means of the numerical modelling. Nonetheless, the reliability of results of the qualitative numerical calculations may be affected by the quality of the collected input data and efficiency of the model calibration. The commonly required input data include pollutants characteristics and coefficients for empirical equations of their transport and decay, while calibration of a model requires series of measurements of selected pollutants concentration in water. This paper presents studies of concentration of pollutants measured in the treated sanitary wastewater discharged to the Bystrzyca river from municipal wastewater treatment plant, and their concentrations measured directly in the river, above and below the location of discharge point. The performed qualitative measurements of treated sewage discharged from municipal wastewater treatment plant and water of the Bystrzyca river included determination of COD, BOD5, N-NH4, N-NO2, N-NNO3, TKN, TN, TP and TSS concentration. The presented results of measurements are the first step in development and calibration of the model, allowing to successfully predict the influence of discharged sanitary wastewater on quality of water in the river.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 18
Author(s):  
Magdalena Łój-Pilch ◽  
Anita Zakrzewska ◽  
Ewa Zielewicz

Risk management, an aspect of which is risk assessment, is a process supporting the proper function of municipal sewage treatment plants. Many factors affect the quality of treated wastewater. Risk assessment, its analysis, and hierarchization permit the elimination of events with the most destructive impacts on the purification process.


2012 ◽  
Vol 66 (10) ◽  
pp. 2185-2193 ◽  
Author(s):  
Yi-Che Hsu ◽  
Hsin-Hsu Huang ◽  
Yu-De Huang ◽  
Ching-Ping Chu ◽  
Yu-Jen Chung ◽  
...  

Water shortage has become an emerging environmental issue. Reclamation of the effluent from municipal wastewater treatment plant (WWTP) is feasible for meeting the growth of water requirement from industries. In this study, the results of a pilot-plant setting in Futian wastewater treatment plant (Taichung, Taiwan) were presented. Two processes, sand filter – ultrafiltration – reverse osmosis (SF-UF-RO) and sand filter – electrodialysis reversal (SF-EDR), were operated in parallel to evaluate their stability and filtrate quality. It has been noticed that EDR could accept inflow with worse quality and thus required less pretreatment compared with RO. During the operation, EDR required more frequent chemical cleaning (every 3 weeks) than RO did (every 3 months). For the filtrate quality, the desalination efficiency of SF-EDR ranged from 75 to 80% in continuous operation mode, while the conductivity ranged from 100 to 120 μS/cm, with turbidity at 0.8 NTU and total organic carbon at 1.3 mg/L. SF-EDR was less efficient in desalinating the multivalent ions than SF-UF-RO was. However for the monovalent ions, the performances of the two processes were similar to each other. Noticeably, total trihalomethanes in SF-EDR filtrate was lower than that of SF-UF-RO, probably because the polarization effects formed on the concentrated side of the EDR membrane were not significant. At the end of this study, cost analysis was also conducted to compare the capital requirement of building a full-scale wastewater reclamation plant using the two processes. The results showed that using SF-EDR may cost less than using SF-UF-RO, if the users were to accept the filtrate quality of SF-EDR.


2004 ◽  
Vol 49 (4) ◽  
pp. 311-317 ◽  
Author(s):  
R. Krull ◽  
E. Döpkens

Dedicated to Professor Dr.-Ing. Dietmar C. Hempel on the occasion of his 60th birthday. A combined biological and chemical process of purification and recycling of residual dyehouse effluents was developed, investigated and installed at a textile finishing company which produces 330,000 m3 colored wastewater effluents per year. The process divided effluent into two streams. Both streams were subjected to anaerobic dye-cleavage, aerobic mineralization of cleavage-products and biomass separation. One stream was also membrane filtered and treated with ozone, which made possible the recycling of 60% of the total discharge. By these means it was possible to increase the quality of the treated streams for recycling purposes, as well as the dye capacity of the textile mill, and to minimize the operating costs. Furthermore, the municipal wastewater treatment plant into which the textile finishing mill's water is discharged, did not need to enhance its capacity.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 253
Author(s):  
Carlos Carbonell-Alcaina ◽  
Jose Luis Soler-Cabezas ◽  
Amparo Bes-Piá ◽  
María Cinta Vincent-Vela ◽  
Jose Antonio Mendoza-Roca ◽  
...  

Management of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated. The process proposed in this work consists of the following membrane-based technologies: Ultrafiltration (UF) (UP005, Microdyn Nadir), Forward Osmosis (FO) (Osmen2521, Hydration Technology Innovation) and Nanofiltration (NF) (NF245, Dow). The FO process was implemented to reduce the salinity entering the NF process, using the FTOP as draw solution and, at the same time, to concentrate the centrate produced in the sludge treatment of a municipal wastewater treatment plant with the aim of obtaining a stream enriched in nutrients. The UF step achieved the elimination of 50% of the chemical oxygen demand of the FTOP. The UF permeate was pumped to the FO system reducing the volume of the anaerobically digested sludge centrate (ADSC) by a factor of 3 in 6.5 h. Finally, the ultrafiltrated FTOP diluted by FO was subjected to NF. The transmembrane pressure needed in the NF stage was 40% lower than that required if the ultrafiltration permeate was directly nanofiltered. By means of the integrated process, the concentration of organic matter and phenolic compounds in the FTOP decreased by 97%. Therefore, the proposed process was able to obtain a treated brine that could be reused in other processes and simultaneously to concentrate a stream, such as the ADSC.


2010 ◽  
Vol 62 (4) ◽  
pp. 956-962 ◽  
Author(s):  
Agostina Chiavola ◽  
Piero Sirini ◽  
Sandro Cecili

The present paper shows the results obtained through an experimental activity carried out on a pilot-scale plant using an innovative technology which couples the granular aerobic sludge with the sequencing batch process. Treatment efficiency and operation costs were evaluated in order to assess feasibility of this new technology for the upgrading of the existing continuous flow activated sludge treatment plant located in Casal Monastero, a decentralized area of the City of Rome. During start-up (about 3 months), the granular aerobic sludge was developed by controlling the dissolved oxygen concentration, the value of pH and the up-flow velocity. Besides, the influent organic loading was progressively increased starting from 0.1 kg/m3 d up to 0.9 kg/m3 d. In order to improve nitrogen removal, an anoxic phase was temporary added to the operative cycle. Complete development of the granular sludge determined an appreciable improvement of the denitrification process which allowed to eliminate the anoxic phase. At regime conditions, the plant was operated with 3 daily cycles, each one of 8 h. The new system showed a reduced sludge production (of about 20–35%) as compared to the existing plant, along with high removal efficiency of both Chemical Oxygen Demand (COD) and nitrogen. However, the operation was discontinuous and strictly related to the strength of the granular sludge. Therefore, a careful monitoring is recommended in order to control operation and performance of this new system.


Sign in / Sign up

Export Citation Format

Share Document