scholarly journals Wheat Responses, Defence Mechanisms and Tolerance to Drought Stress: A Review Article

Author(s):  
Savyata Kandel

Wheat (Triticum aestivum L.) is one of the major basic stable crops grown worldwide, however, it is sensitive to environmental stresses like drought. With climate change, drought stress is becoming an increasingly severe constraint on wheat production which affects the plant growth and development, physiological functions, grain formation, grain quality and ultimately the yield. Various responses including biochemical, physiological, morphological, and molecular adaptations are shown by plants to survive in the drought stress condition. Drought escape, avoidance and tolerance are important coping mechanisms of wheat plant under drought environment. Several mechanisms such as accumulation of ABA, osmotic adjustment, and induction of dehydrins may confer drought tolerance by maintaining the high tissue water potential. As the root structure and root biomass define the pattern of water extraction from the soil, enhanced root and suppressed shoot growth resulting in higher root: shoot ratio facilitated plants to drought tolerance. The development of drought tolerance varieties becomes an important due to the uneven distribution of rainfall and water shortage. Some growth stage-specific physio-morphological traits are fundamental targets to breed drought-tolerant wheat varieties. Mutation breeding, molecular breeding, genome engineering techniques including gene pyramiding, gene stacking, and transgenics are employed to breed wheat for tolerance to abiotic stresses including drought. Omics decode the entire genome to have better understanding of plant molecular responses that will provide precise strategies for crop improvement. This paper discusses the wheat plant’s responses to drought stress, their defense mechanisms and modern techniques for the development of drought tolerant wheat varieties.

2007 ◽  
Vol 19 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Marcelo de A. Silva ◽  
John L. Jifon ◽  
Jorge A.G. da Silva ◽  
Vivek Sharma

Drought is one of the major limitations to plant productivity worldwide. Identifying suitable screening tools and quantifiable traits would facilitate the crop improvement process for drought tolerance. In the present study, we evaluated the ability of four relatively physiological parameters (variable-to-maximum chlorophyll a fluorescence ratio, F v/F m; estimated leaf chlorophyll content via SPAD index; leaf temperature, LT; and, leaf relative water content, RWC) to distinguish between drought tolerant and susceptible sugarcane genotypes subjected to a 90-d drought cycle. Eight field-grown genotypes were studied. By 45 d after the onset of treatments, the F v/F m, SPAD index and RWC of drought-stressed plants had declined significantly in all genotypes compared to values at the onset of well-watered treatments. However, the reductions were more severe in leaves of susceptible genotypes. Under drought stress, the tolerant genotypes as a group, maintained higher F v/F m (8%), SPAD index (15%), and RWC (16%) than susceptible genotypes. In general, LT of drought-stressed plants was higher (~4ºC) than that of well-watered plants but the relative increase was greater among drought susceptible genotypes. Under drought stress, LT of tolerant genotypes was on average 2.2ºC lower than that of susceptible genotypes. The results are consistent with the tolerant-susceptible classification of these genotypes and indicate that these tools can be reliable in screening for drought tolerance, with F v/F m, SPAD index and LT having the added advantage of being nondestructive and easily and quickly assessed.


2021 ◽  
Author(s):  
P N Sivalingam ◽  
Mahesh M Mahajan ◽  
Viswanathan Satheesh ◽  
Sarita Chauhan ◽  
Harish Changal ◽  
...  

Abstract Tree species in the arid and semi-arid regions use various strategies to combat drought stress. Ziziphus nummularia, native to the Thar Desert in India, is highly drought-tolerant. To identify the most drought-tolerant ecotype of Z. nummularia, one ecotype each from semi-arid (Godhra, annual rainfall > 750 mm), arid (Bikaner, 250–350 mm) and hyper-arid (Jaisalmer, < 150 mm) regions was selected along with two other Ziziphus species; Z. mauritiana and Z. rotundifolia, and screened for parameters contributing to drought tolerance. Among these, Z. nummularia (Jaisalmer) (CIAHZN-J) was the most drought-tolerant. The tolerance nature of CIAHZN-J was associated with increased membrane stability, root length and number, length of hairs and thorns, root dry/fresh weight ratio, seed germination (at −0.5 MPa), proline content (31 fold), catalase and sugar content (2 to 3 fold). Apart from these characteristics, it also exhibited the longest duration to reach highest cumulative drought stress rating, maintained higher relative water content for a longer period of time with reduced leaf size, leaf rolling and falling of older leaves, and displayed sustained shoot growth during drought stress. To determine drought tolerance in Ziziphus, we developed a morphological symptom-based screening technique in this study. Additionally, transcriptome profiling of CIAHZN-J in response to drought revealed the up-regulation of genes involved in sugar metabolism and transport, ABA biosynthesis, osmo-regulation, ROS homeostasis and maintaining water potential. Expression profiles and semi-quantitative reverse transcription PCR results further correlated with the physiological and biochemical mechanisms. In conclusion, CIAHZN-J is an excellent genetic stock for the identification of drought-responsive genes and can also be deployed in crop improvement programmes for drought tolerance.


2021 ◽  
Author(s):  
Afsana Hannan ◽  
Md. Najmol Hoque ◽  
Lutful Hassan ◽  
Arif Hasan Khan Robin

Wheat is one of the major cereal crops in Bangladesh. Over the last two decades, wheat consumption has passionately amplified in Bangladesh but its production has declined due to various stress environments. Recurrent drought event due to climate change that threatens the country’s food safety has become a serious concern. To safeguard the food security, adopting suitable breeding strategies can add momentum. Developing drought tolerant wheat varieties are the definitive means of protecting the crop against hostile effects of drought. Plant breeders are exploring various breeding strategies to breed for the varieties that can cope with water deficient conditions well. Besides, breeders are consistently looking for new prospects and strategies that can boost genetic gain in yield. To endorse drought tolerance in wheat, understanding the physiological and genetic adaptation mechanisms of wheat cultivars during drought stress would provide the estimated benchmarks to adjust for suitable breeding programs. The efforts of developing drought tolerant wheat genotypes could be supported by different breeding strategies including in vitro haploid and double haploid protocols, polyploidization, development of various types of hybrids and induced mutants by utilizing both classical and molecular breeding techniques. The proposed book chapter shall discuss the pattern of drought-stress in the wheat growing regions, effects of drought stress on wheat production and suitable breeding strategies for developing drought tolerant genotypes in Bangladesh.


Agrotek ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Ivonne Fitri Mariay

<em>Plants suffering from drought stress can be indicated by the changing of character on the morphology, anatomy and physiology, characterized by inhibition of leaf growth, accelerated root growth, stomata closure and leaf curly. Cultivars that are tolerance to drought can physiologically adapted by increasing prolin level reduce the osmotic potential in order to maintain turgor in the condition of low tissue water potential. The research was aimed to study the physiological characters of drought tolerant soybean cultivar of determine the relationship of nitrate reductase activity and chlorophyll content of drought-tolerance cultivars and susceptible to drought stress conditions. The research was conducted at Tridharma Garden Agricultural Faculty of Gadjah Mada University, Banguntapan, Bantul, Daerah Istimewa Yogyakarta from January to March 2012. The experiment was arranged on Factorial Complete Block Design with three replications. The first factor was soybean cultivar consist of five levels those are Wilis (drought tolerance), Tidar (drought tolerant), Gema (drought tolerant), Grobogan (susceptible) and Argomulyo (susceptible). The second factor was watering interval consist of four levels which were watering once a day, every 2 days, every 4 days and every 8 days. Drought stress treatment begans at 24 DAP. Parameters observed were moisture content, nitrate reductase activity, chlorophyll a, chlorophyll b, and total of chlorophyll at 56 DAP. Portable data analysis using SAS 9.1. for windows. The results showed that nitrate reductase activity contributes to greater levels of chlorophyll of drought tolerance cultivars "Wilis", "Tidar" and "Gema" on the conditions of drought stress than the susceptible cultivar "Grobogan" and "Argomulyo".</em>


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Priyanka Dwivedi ◽  
Naleeni Ramawat ◽  
Gaurav Dhawan ◽  
Subbaiyan Gopala Krishnan ◽  
Kunnummal Kurungara Vinod ◽  
...  

Reproductive stage drought stress (RSDS) is detrimental for rice, which affects its productivity as well as grain quality. In the present study, we introgressed two major quantitative trait loci (QTLs), namely, qDTY2.1 and qDTY3.1, governing RSDS tolerance in a popular high yielding non-aromatic rice cultivar, Pusa 44, through marker-assisted backcross breeding (MABB). Pusa 44 is highly sensitive to RSDS, which restricts its cultivation across drought-prone environments. Foreground selection was carried out using markers, RM520 for qDTY3.1 and RM 521 for qDTY2.1. Background selection was achieved with 97 polymorphic SSR markers in tandem with phenotypic selection to achieve faster recurrent parent genome (RPG) recovery. Three successive backcrosses followed by three selfings aided RPG recoveries of 98.6% to 99.4% among 31 near isogenic lines (NILs). Fourteen NILs were found to be significantly superior in yield and grain quality under RSDS with higher drought tolerance efficiency (DTE) than Pusa 44. Among these, the evaluation of two promising NILs in the multilocational trial during Kharif 2019 showed that they were significantly superior to Pusa 44 under reproductive stage drought stress, while performing on par with Pusa 44 under normal irrigated conditions. These di-QTL pyramided drought-tolerant NILs are in the final stages of testing the All India Coordinated Rice Improvement Project varietal trials for cultivar release. Alternately, the elite drought-tolerant Pusa 44 NILs will serve as an invaluable source of drought tolerance in rice improvement.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2374
Author(s):  
Marium Khatun ◽  
Sumi Sarkar ◽  
Farzana Mustafa Era ◽  
A. K. M. Mominul Islam ◽  
Md. Parvez Anwar ◽  
...  

Grain legumes are important sources of proteins, essential micronutrients and vitamins and for human nutrition. Climate change, including drought, is a severe threat to grain legume production throughout the world. In this review, the morpho-physiological, physio-biochemical and molecular levels of drought stress in legumes are described. Moreover, different tolerance mechanisms, such as the morphological, physio-biochemical and molecular mechanisms of legumes, are also reviewed. Moreover, various management approaches for mitigating the drought stress effects in grain legumes are assessed. Reduced leaf area, shoot and root growth, chlorophyll content, stomatal conductance, CO2 influx, nutrient uptake and translocation, and water-use efficiency (WUE) ultimately affect legume yields. The yield loss of grain legumes varies from species to species, even variety to variety within a species, depending upon the severity of drought stress and several other factors, such as phenology, soil textures and agro-climatic conditions. Closure of stomata leads to an increase in leaf temperature by reducing the transpiration rate, and, so, the legume plant faces another stress under drought stress. The biosynthesis of reactive oxygen species (ROS) is the most detrimental effect of drought stress. Legumes can adapt to the drought stress by changing their morphology, physiology and molecular mechanism. Improved root system architecture (RSA), reduced number and size of leaves, stress-induced phytohormone, stomatal closure, antioxidant defense system, solute accumulation (e.g., proline) and altered gene expression play a crucial role in drought tolerance. Several agronomic, breeding both conventional and molecular, biotechnological approaches are used as management practices for developing a drought-tolerant legume without affecting crop yield. Exogenous application of plant-growth regulators (PGRs), osmoprotectants and inoculation by Rhizobacteria and arbuscular mycorrhizal fungi promotes drought tolerance in legumes. Genome-wide association studies (GWASs), genomic selection (GS), marker-assisted selection (MAS), OMICS-based technology and CRISPR/Cas9 make the breeding work easy and save time in the developmental cycle to get resistant legumes. Several drought-resistant grain legumes, such as the chickpea, faba bean, common bean and pigeon pea, were developed by different institutions. Drought-tolerant transgenic legumes, for example, chickpeas, are developed by introgressing desired genes through breeding and biotechnological approaches. Several quantitative trait loci (QTLs), candidate genes occupying drought-tolerant traits, are identified from a variety of grain legumes, but not all are under proper implementation. Hence, more research should be conducted to improve the drought-tolerant traits of grain legumes for avoiding losses during drought.


2018 ◽  
Vol 46 (2) ◽  
pp. 679-687 ◽  
Author(s):  
Preeyanuch LARKUNTHOD ◽  
Noppawan NOUNJAN ◽  
Jonaliza L SIANGLIW ◽  
Theerayut TOOJINDA ◽  
Jirawat SANITCHON ◽  
...  

Many of the economically important rice cultivars including ‘Khao Dawk Mali 105’ (KDML105) or jasmine rice, one of the world’s famous rice exported from Thailand suffers from drought due to erratic rainfalls and limited irrigation. To improve drought tolerance and reserve genetic background of KDML105, chromosome segment substitution lines (CSSL) containing drought tolerant quantitative trait loci (DT-QTL) has been previously developed by backcrossing between KDML105 and drought tolerant donor, IR58586-F2-CA-143 (DH212). To understand the physiological responses related to drought tolerance in CSSL lines compared to parents, two CSSLs namely CSSL1-16 and CSSL1-18, respectively were used in this study. Twenty-one-d-old hydroponically grown plants were subjected to 20% PEG for 0, 7, 14 d and then recovered from stress for 3 d. The results indicated that CSSL lines especially, CSSL1-16 showed better performance under drought stress compared to their recurrent parent. Drought tolerance superior CSSL1-16 line was indicated by high water status (high relative water content and leaf water potential), good osmotic adjustment, high proline and greater membrane stability. Moreover, this line was able to resume growth after stress recovery whereas other lines/cultivar could not recover. Similarly, drought tolerant donor showed high water status suggesting that well-maintained plant water status was associated with drought tolerant trait. It could be concluded that the highest drought tolerant line was CSSL1-16 followed by DH212, CSSL1-18 and KDML105. It would be interesting to go further into introgressed section in CSSL1-16 to identify potential candidate genes in DT-QTL for breeding drought tolerant rice in the future.


2020 ◽  
Author(s):  
R. Anupriya ◽  
Sugitha Thankappan ◽  
A. Senthil ◽  
D. Rajakumar ◽  
Geetha S ◽  
...  

Abstract Seed germination plays a critical role in determining rice productivity under drought stress. We evaluated 100 traditional rice landraces originated from different agro-ecological zones of Tamil Nadu along with drought- susceptible (IR 64) and drought- tolerant (IR 64 DRT) checks. Moisture stress was induced using PEG 6000 and screening done over a range of osmotic potentials (-) 10 bars, (-) 12.5 bars and (-)15 bars for a period of 5 d. Physio-morphological traits such as germination rate, survival per cent, root and shoot length, vigor index, RS ratio and relative water content (RWC) were assessed during early drought stress. We observed significant changes in the seed macromolecules, phytohormone levels (GA and IAA), osmolytes and antioxidant responses (catalase and superoxide dismutase) between drought stress and control treatments. Kuliyadichan registered significantly higher IAA and GA (44% and 35% respectively over drought tolerant check IR 64 DRT) at drought stress, whereas all the landraces showed an elevated catalase activity. In PC analysis, first three PCs captured 88.93% of the total variation; significant differences were detected among genotypes with respect to the studied parameters. Six traditional landraces such as Kuliyadichan, Rajalakshmi, Sabhagidhan, Nootripathu, Chandaikar and Mallikar were selected and their inherent drought tolerance was associated with metabolic responses viz., triggered hydrolytic enzyme activities, hormonal cross-talk, ROS signaling and catalase under drought stress compared to drought sensitive IR64. Hence, these genotypes can be used as potential donor candidates towards genetic improvement of drought tolerance in rice.


Sign in / Sign up

Export Citation Format

Share Document