scholarly journals Investigation of sensitive element for pressure sensor based on bipolar piezotransistor

2021 ◽  
Author(s):  
Mikhail ◽  
Denis Prigodskiy

The article translated from Russian to English on pp. 691-693 (please, look down). The paper summarizes results of investigation of high-sensitivity MEMS pressure sensor based on a circuit containing both active and passive stress-sensitive elements: a differential amplifier utilizing two n-p-n piezotransistors and for p-type piezoresistors. A comparative analysis of a sensor utilizing this circuit with a pressure sensor based on traditional piezoresistive Wheatstone bridge and built on the same mechanical part is provided. MEMS pressure sensor with the differential amplifier (PSDA) has sensitivity of S = 0.66 mV/kPa/V, which exceeded the sensitivity of the element with piezoresistive Wheatstone bridge (PSWB) by 2.2 times. The sensitivity increase allows for the following sensor improvements: die size reduction, increase of diaphragm mechanical strength while keeping high pressure sensitivity, and simplifying requirements to external processing of the pressure sensor output signal. There are two main challenges related to the use of PSDA-based pressure sensors: strong dependence of output signal on temperature and higher than in PSWB noise reducing the dynamic range of the device to 10 3. The article describes methods of addressing these problems. The temperature dependence of sensor output signal can be minimized with help of an offset thermal compensation circuit and by eliminating metallization at the thin part of the diaphragm. The noise can be minimized by reducing the thickness of the active base region of the transistor. Circuit analysis with software NI Multisim shows that sensitivity of PSDA-based pressure sensor can be increased 2.3 times by circuit optimization.

2018 ◽  
Vol 4 (1) ◽  
pp. 595-598
Author(s):  
Roland Fischer ◽  
Heinrich Ditler ◽  
Michael Görtz ◽  
Wilfried Mokwa

AbstractArtificial limbs, equipped with miniaturized tactile sensors, can handle objects with more dexterousness. Next to detecting forces, the sensor devices are also able to measure temperature. With this additional information, the touched objects can be better characterized. As such sensors, active CMOS-based capacitive pressure sensors are used in this work. The Sensors are thinned to 20-30 μm target thickness to make them bendable. One challenge of such thin sensors is the strong dependence of the output signal upon bending. To compensate this dependency, two sensors were mounted back to back. This allows a numerical adjustment of the two characteristic sensor output signals to mechanical stress curves. After electrically contacting of the stacks with a 15 μm thin polyimide foil substrate, the bending dependence of the stacks was characterized with a four-point bending procedure. By this characterization the dependency of the pressure sensor output signal on the height of mechanical stress was determined. Both sensor output signals show an inverted behavior under the same mechanical stress which confirmed prior simulation results with the same setup. Based on this information, a numerical method for compensating the bending dependence was successfully proven.


2021 ◽  
Author(s):  
Mikhail ◽  
Denis Prigodskiy

The paper describes modeling of high-sensitivity MEMS pressure sensor based on a circuit containing both active and passive stress-sensitive elements: a differential amplifier utilizing two n-p-n transistors and four p-type piezoresistors. The analysis on the basis of the developed mathematical model for a pressure sensor with traditional piezoresistive Wheatstone bridge and theoretical conclusions regarding the change in the electrical parameters of a bipolar transistor under the influence of deformation was carried out.


2019 ◽  
Vol 9 (11) ◽  
pp. 2241 ◽  
Author(s):  
Honglin Li ◽  
Hui Deng ◽  
Guangqi Zheng ◽  
Mingguang Shan ◽  
Zhi Zhong ◽  
...  

Corrugated diaphragms (CDs) have been widely used in many fields because of their higher pressure sensitivity and wider linear range compared to flat diaphragms (FDs) in the same circumstances. Especially in the application of miniature fiber-optic pressure sensors, the introduction of the corrugated structure gives the sensor high sensitivity, large dynamic range, good linearity, small hysteresis, good stability, and so on. Research on CD-based miniature fiber-optic pressure sensors has gradually attracted more attention in recent years. In this paper, the principles of operation of a miniature fiber-optic pressure sensor are briefly introduced, then the mechanical properties of FD and CD, as well as their influences on the performance of the sensor, are analyzed in detail. The application status of CDs in miniature fiber-optic pressure sensors is reviewed, and our conclusions and the prospects for the application of CDs in miniature fiber-optic pressure sensors are given finally.


2020 ◽  
Vol 8 (4) ◽  
pp. 296-307
Author(s):  
Konstantin Krestovnikov ◽  
Aleksei Erashov ◽  
Аleksandr Bykov

This paper presents development of pressure sensor array with capacitance-type unit sensors, with scalable number of cells. Different assemblies of unit pressure sensors and their arrays were considered, their characteristics and fabrication methods were investigated. The structure of primary pressure transducer (PPT) array was presented; its operating principle of array was illustrated, calculated reference ratios were derived. The interface circuit, allowing to transform the changes in the primary transducer capacitance into voltage level variations, was proposed. A prototype sensor was implemented; the dependency of output signal power from the applied force was empirically obtained. In the range under 30 N it exhibited a linear pattern. The sensitivity of the array cells to the applied pressure is in the range 134.56..160.35. The measured drift of the output signals from the array cells after 10,000 loading cycles was 1.39%. For developed prototype of the pressure sensor array, based on the experimental data, the average signal-to-noise ratio over the cells was calculated, and equaled 63.47 dB. The proposed prototype was fabricated of easily available materials. It is relatively inexpensive and requires no fine-tuning of each individual cell. Capacitance-type operation type, compared to piezoresistive one, ensures greater stability of the output signal. The scalability and adjustability of cell parameters are achieved with layered sensor structure. The pressure sensor array, presented in this paper, can be utilized in various robotic systems.


2021 ◽  
Author(s):  
Mikhail

High sensitivity MEMS pressure sensor chip for different ranges (1 to 60 kPa) utilizing the novel electrical circuit of piezosensitive differential amplifier with negative feedback loop (PDA-NFL) is developed. Pressure sensor chip PDA-NFL utilizes two bipolar-junction transistors (BJT) with vertical n-p-n type structure (V-NPN) and eight piezoresistors (p-type). Both theoretical model of sensor response to pressure and temperature and experimental data are presented. Data confirms the applicability of theoretical model. Introduction of the amplifier allows for decreasing chip size while keeping the same sensitivity as a chip with classic Wheatstone bridge circuit.


Author(s):  
Jiang Zhao ◽  
Jiahao Gui ◽  
Jinsong Luo ◽  
Jing Gao ◽  
Caidong Zheng ◽  
...  

Abstract Graphene-based pressure sensors have received extensive attention in wearable devices. However, reliable, low-cost, and large-scale preparation of structurally stable graphene electrodes for flexible pressure sensors is still a challenge. Herein, for the first time, laser-induced graphene (LIG) powder are prepared into screen printing ink, and shape-controllable LIG patterned electrodes can be obtained on various substrates using a facile screen printing process, and a novel asymmetric pressure sensor composed of the resulting screen-printed LIG electrodes has been developed. Benefit from the 3D porous structure of LIG, the as-prepared flexible LIG screen-printed asymmetric pressure sensor has super sensing properties with a high sensitivity of 1.86 kPa−1, low detection limit of about 3.4 Pa, short response time, and long cycle durability. Such excellent sensing performances give our flexible asymmetric LIG screen-printed pressure sensor the ability to realize real-time detection of tiny body physiological movements (such as wrist pulse and pronunciation action). Besides, the integrated sensor array has a multi-touch function. This work could stimulate an appropriate approach to designing shape-controllable LIG screen-printed patterned electrodes on various flexible substrates to adapt the specific needs of fulfilling compatibility and modular integration for potential application prospects in wearable electronics.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000373-000378
Author(s):  
R. Otmani ◽  
N. Benmoussa ◽  
K. Ghaffour

Piezoresistive pressure sensors based on Silicon have a large thermal drift because of their high sensitivity to temperature (ten times more sensitive to temperature than metals). So the study of the thermal behavior of these sensors is essential to define the parameters that cause the drift of the output characteristics. In this study, we adopted the behavior of 2nd degree gauges depending on the temperature. Then we model the thermal behavior of the sensor and its characteristics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 664 ◽  
Author(s):  
Junsong Hu ◽  
Junsheng Yu ◽  
Ying Li ◽  
Xiaoqing Liao ◽  
Xingwu Yan ◽  
...  

The reasonable design pattern of flexible pressure sensors with excellent performance and prominent features including high sensitivity and a relatively wide workable linear range has attracted significant attention owing to their potential application in the advanced wearable electronics and artificial intelligence fields. Herein, nano carbon black from kerosene soot, an atmospheric pollutant generated during the insufficient burning of hydrocarbon fuels, was utilized as the conductive material with a bottom interdigitated textile electrode screen printed using silver paste to construct a piezoresistive pressure sensor with prominent performance. Owing to the distinct loose porous structure, the lumpy surface roughness of the fabric electrodes, and the softness of polydimethylsiloxane, the piezoresistive pressure sensor exhibited superior detection performance, including high sensitivity (31.63 kPa−1 within the range of 0–2 kPa), a relatively large feasible range (0–15 kPa), a low detection limit (2.26 pa), and a rapid response time (15 ms). Thus, these sensors act as outstanding candidates for detecting the human physiological signal and large-scale limb movement, showing their broad range of application prospects in the advanced wearable electronics field.


Author(s):  
Tran Anh Vang ◽  
Xianmin Zhang ◽  
Benliang Zhu

The sensitivity and linearity trade-off problem has become the hotly important issues in designing the piezoresistive pressure sensors. To solve these trade-off problems, this paper presents the design, optimization, fabrication, and experiment of a novel piezoresistive pressure sensor for micro pressure measurement based on a combined cross beam - membrane and peninsula (CBMP) structure diaphragm. Through using finite element method (FEM), the proposed sensor performances as well as comparisons with other sensor structures are simulated and analyzed. Compared with the cross beam-membrane (CBM) structure, the sensitivity of CBMP structure sensor is increased about 38.7 % and nonlinearity error is reduced nearly 8%. In comparison with the peninsula structure, the maximum non-linearity error of CBMP sensor is decreased about 40% and the maximum deflection is extremely reduced 73%. Besides, the proposed sensor fabrication is performed on the n-type single crystal silicon wafer. The experimental results of the fabricated sensor with CBMP membrane has a high sensitivity of 23.4 mV/kPa and a low non-linearity of −0.53% FSS in the pressure range 0–10 kPa at the room temperature. According to the excellent performance, the sensor can be applied to measure micro-pressure lower than 10 kPa.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6588
Author(s):  
Jun Ho Lee ◽  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jae Cheol Shin ◽  
Jeong-Wan Jo ◽  
...  

For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa−1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa−1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures.


Sign in / Sign up

Export Citation Format

Share Document